Full Text:   <189>

Summary:  <26>

CLC number: O232

On-line Access: 2020-07-10

Received: 2018-12-05

Revision Accepted: 2019-08-12

Crosschecked: 2020-03-06

Cited: 0

Clicked: 275

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Li Xie

https://orcid.org/0000-0002-5214-9769

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.7 P.1085-1107

http://doi.org/10.1631/FITEE.1800763


Optimal two-impulse space interception with multiple constraints


Author(s):  Li Xie, Yi-qun Zhang, Jun-yan Xu

Affiliation(s):  State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China; more

Corresponding email(s):   lixie@ncepu.edu.cn, yiqunzhang@hotmail.com, junyan_Xu@sina.cn

Key Words:  Space interception problems, Variational method, Multiple constraints, Two-velocity impulses, Multi-point boundary value problems, Local optimal solutions, Dynamic slackness variable method


Li Xie, Yi-qun Zhang, Jun-yan Xu. Optimal two-impulse space interception with multiple constraints[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(7): 1085-1107.

@article{title="Optimal two-impulse space interception with multiple constraints",
author="Li Xie, Yi-qun Zhang, Jun-yan Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="7",
pages="1085-1107",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800763"
}

%0 Journal Article
%T Optimal two-impulse space interception with multiple constraints
%A Li Xie
%A Yi-qun Zhang
%A Jun-yan Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 7
%P 1085-1107
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800763

TY - JOUR
T1 - Optimal two-impulse space interception with multiple constraints
A1 - Li Xie
A1 - Yi-qun Zhang
A1 - Jun-yan Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 7
SP - 1085
EP - 1107
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800763


Abstract: 
We consider optimal two-impulse space interception problems with multiple constraints. The multiple constraints are imposed on the terminal position of a space interceptor, impulse and impact instants, and the component-wise magnitudes of velocity impulses. These optimization problems are formulated as multi-point boundary value problems and solved by the calculus of variations. Slackness variable methods are used to convert all inequality constraints into equality constraints so that the Lagrange multiplier method can be used. A new dynamic slackness variable method is presented. As a result, an indirect optimization method is developed. Subsequently, our method is used to solve the two-impulse space interception problems of free-flight ballistic missiles. A number of conclusions for local optimal solutions have been drawn based on highly accurate numerical solutions. Specifically, by numerical examples, we show that when time and velocity impulse constraints are imposed, optimal two-impulse solutions may occur; if two-impulse instants are free, then a two-impulse space interception problem with velocity impulse constraints may degenerate to a one-impulse case.

多约束条件下的最优两脉冲空间拦截

谢力1,张奕群2,徐俊艳2
1华北电力大学控制与计算机工程学院新能源电力系统国家重点实验室,中国北京市,102206
2北京电子工程总体研究所,中国北京市,100854

摘要:本文研究多约束条件下的最优两脉冲空间拦截问题。对空间拦截器的末端位置、脉冲和拦截时刻以及速度脉冲的分量大小施加多约束。通过变分法将这些优化问题归结为多点边值问题。为使用拉格朗日乘子法,采用松弛变量法将所有不等式约束转化为等式约束。为此提出一种新的动态松弛变量法,并建立一种间接优化方法。随后,用所提方法解决自由飞行弹道导弹的两脉冲空间拦截问题。在高精度数值解基础上,得到一些局部最优解的结论。具体来说,通过数值算例,证明了当存在时间和速度脉冲约束时,多约束拦截问题可能出现最优两脉冲解;如果两个脉冲时刻是自由的,那么具有速度脉冲约束的两脉冲空间拦截问题可能退化为单脉冲情形。

关键词:空间拦截问题;变分法;多约束;两速度脉冲;多点边值问题;局部最优解;动态松弛变量法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ben-Asher JZ, 2010. Optimal Control Theory with Aerospace Applications. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, USA.

[2]Bryson AE, 1980. This Week’s Citation Classic. http://garfield.library.upenn.edu/classics1980/A1980JE 96000001.pdf

[3]Bryson AE, 1996. Optimal control—1950 to 1985. IEEE Contr Syst Mag, 16(3):26-33.

[4]Bryson AE, Ho YC, 1975. Applied Optimal Control: Optimization, Estimation and Control. Halsted Press, New York, USA.

[5]Guidance and Optimal Control of Ballistic Missiles. National University of Defense Technology Press, Changsha, China (in Chinese).

[6]Colasurdo G, Pastrone D, 1994. Indirect optimization method for impulsive transfers. Proc Astrodynamics Conf on Guidance, Navigation, and Control, p.441-448.

[7]Curtis HD, 2014. Orbital Mechanics for Engineering Students (3rd Ed.). Elsevier, Oxford, UK.

[8]Gobetz FW, Doll JR, 1969. A survey of impulsive trajectories. AIAA J, 7(5):801-834.

[9]Guidance Law of Interception Problems. National Defense Industry Press, Beijing, China (in Chinese).

[10]Hull DG, 2003. Optimal Control Theory for Applications. Springer, New York, USA.

[11]Jezewski DJ, 1975. Primer Vector Theory and Applications. NASA-TR-R-454, NASA, Washington, USA.

[12]Kierzenka J, 1998. Studies in the Numerical Solution of Ordinary Differential Equations. PhD Thesis, Department of Mathematics, Southern Methodist University, Dallas, USA.

[13]Kierzenka J, Shampine LF, 2001. A BVP solver based on residual control and the Matlab PSE. ACM Trans Math Softw, 27(3):299-316.

[14]Kierzenka J, Shampine LF, 2008. A BVP solver that controls residual and error. J Numer Anal Ind Appl Math, 3:27-41.

[15]Lawden DF, 1964. Optimal trajectories for space navigation. Math Gaz, 48(36):478-479.

[16]Longuski JM, Guzmán JJ, Prussing JE, 2014. Optimal Control with Aerospace Applications. Springer, New York, USA.

[17]Luo YZ, Tang GJ, Lei YJ, et al., 2007. Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers. J Guid Contr Dynam, 30(4):946-952.

[18]Luo YZ, Zhang J, Li HY, et al., 2010. Interactive optimization approach for optimal impulsive rendezvous using primer vector and evolutionary algorithms. Acta Astronaut, 67(3-4):396-405.

[19]Prussing JE, 1995. Optimal impulsive linear systems: sufficient conditions and maximum number of impulses. J Astronaut Sci, 43(2):195-206.

[20]Prussing JE, 2010. Primer vector theory and applications. In: Conway BA (Ed.), Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge, UK, p.16-36.

[21]Prussing JE, Chiu JH, 1986. Optimal multiple-impulse time-fixed rendezvous between circular orbits. J Guid Contr Dynam, 9(1):17-22.

[22]Qin HS, Wang CZ, 1977. Guidance Problems of Exoatmospheric Interception and Rendezvous (Collected Papers). National Defense Industry Press, Beijing, China (in Chinese).

[23]Robinson AC, 1967. Comparison of Fuel-Optimal Maneuvers Using a Minimum Number of Impulses with Those Using the Optimal Number of Impulses: a Survey. NASA Contractor Report NASw-1146, Columbus Laboratories, Columbus, USA.

[24]Sandrik SL, 2006. Primer-Optimized Results and Trends for Circular Phasing and Other Circle-to-Circle Impulsive Coplanar Rendezvous. PhD Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign Urbana, IL, USA.

[25]Shampine LF, Gladwell I, Thompson S, 2003. Solving ODEs with Matlab. Cambridge University Press, Cambridge, UK.

[26]Sigal E, Ben-Asher JZ, 2014. Optimal control for switched systems with pre-defined order and switch-dependent dynamics. J Optim Theory Appl, 161(2):582-591.

[27]Subchan S, .Zbikowski R, 2009. Computational Optimal Control: Tools and Practice. Wiley, Chichester, UK.

[28]Taur DR, Coverstone-Carroll V, Prussing JE, 1995. Optimal impulsive time-fixed orbital rendezvous and interception with path constraints. J Guid Contr Dynam, 18(1):54-60.

[29]Tsien HS, Evans RC, 1951. Optimum thrust programming for a sounding rocket. J Am Rocket Soc, 21(5):99-107.

[30]Vinh NX, Lu P, Howe RM, et al., 1990. Optimal interception with time constraint. J Optim Theory Appl, 66(3):361-390.

[31]Wang XH, Huang Y, Wang H, et al., 2014. Variable time impulse system optimization with continuous control and impulse control. Asian J Contr, 16(1):107-116.

[32]Xie L, Zhang YQ, Xu JY, 2018. Hohmann transfer via constrained optimization. Front Inform Technol Electron Eng, 19(11):1444-1458.

[34]Žefran M, Desai JP, Kumar V, 1996. Continuous motion plans for robotic systems with changing dynamic behavior. Proc 2nd Int Workshop on Algorithmic Foundations of Robotics.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE