Full Text:   <1616>

Summary:  <299>

CLC number: TP929.3

On-line Access: 2018-10-05

Received: 2017-11-19

Revision Accepted: 2018-08-02

Crosschecked: 2018-08-12

Cited: 0

Clicked: 1398

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Han Wang

http://orcid.org/0000-0001-6213-2082

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.8 P.951-971

http://doi.org/10.1631/FITEE.1700775


Underwater acoustic communication and the general performance evaluation criteria


Author(s):  Jian-guo Huang, Han Wang, Cheng-bing He, Qun-fei Zhang, Lian-you Jing

Affiliation(s):  School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China; more

Corresponding email(s):   whan@mail.nwpu.edu.cn

Key Words:  Underwater acoustic communication, Underwater acoustic channels, High data rate, Communication range, Bandwidth efficiency, General evaluation criterion


Jian-guo Huang, Han Wang, Cheng-bing He, Qun-fei Zhang, Lian-you Jing. Underwater acoustic communication and the general performance evaluation criteria[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(8): 951-971.

@article{title="Underwater acoustic communication and the general performance evaluation criteria",
author="Jian-guo Huang, Han Wang, Cheng-bing He, Qun-fei Zhang, Lian-you Jing",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="8",
pages="951-971",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700775"
}

%0 Journal Article
%T Underwater acoustic communication and the general performance evaluation criteria
%A Jian-guo Huang
%A Han Wang
%A Cheng-bing He
%A Qun-fei Zhang
%A Lian-you Jing
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 8
%P 951-971
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700775

TY - JOUR
T1 - Underwater acoustic communication and the general performance evaluation criteria
A1 - Jian-guo Huang
A1 - Han Wang
A1 - Cheng-bing He
A1 - Qun-fei Zhang
A1 - Lian-you Jing
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 8
SP - 951
EP - 971
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700775


Abstract: 
Driven by the huge demand to explore oceans, underwater wireless communications have been rapidly developed in the past few decades. Due to the complex physical characteristics of water, acoustic wave is the only media available for underwater wireless communication at any distance. As a result, underwater acoustic communication (UAC) is the major research field in underwater wireless communication. In this paper, characteristics of underwater acoustic channels are first introduced and compared with terrestrial communication to demonstrate the difficulties in UAC research. To give a general impression of the UAC, current important research areas are mentioned. Furthermore, different principal modulation-based schemes for short- and medium-range communications with high data rates are investigated and summarized. To evaluate the performance of UAC systems in general, three criteria are presented based on the research publications and our years of experience in high-rate short- to medium-range communications. These three criteria provide useful tools to generally guide the design and evaluate the performance of underwater acoustic communication systems.

水声通信系统与一般性能评价准则

概要:在过去的几十年中,由于探索海洋的巨大需求,水下无线通信技术获快速发展。水体自身复杂的物理特性使声波成为唯一的适用于任意距离水下无线通信载体。水声通信是水下无线通信领域中的一个主要研究方向。首先介绍水声信道的特性,并将其与无线电波信道特性对比,以此体现水声通信的研究难点。通过介绍当前水声通信中的主要研究领域来描述水声通信的发展状况。此外,分析总结了高速中近程水声通信的各种主要调制解调方式。基于中近程水声通信经验,总结了针对水声通信系统性能的3种一般评价准则。所提一般评价准则对水声通信系统设计和评价具有重要指导意义。

关键词:水声通信;水声信道;高数据率;通信距离;带宽利用率;一般评价准则

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aydinlik M, Ozdemir AT, Stajanovic M, 2008. A physical layer implementation on reconfigurable underwater acoustic modem. OCEANS, p.1-4.

[2]Bejjani E, Belfiore JC, 1996. Multicarrier coherent communications for the underwater acoustic channel. OCEANS, p.1125-1130.

[3]Benson CR, Ryan MJ, Frater MR, 2012. Towards robust high data-rate hydro-acoustic modems. OCEANS, p.1-3.

[4]Berger CR, Zhou S, Preisig JC, et al., 2009. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. OCEANS, p.1-8.

[5]Beygi S, Mitra U, 2012. Optimal Bayesian resampling for OFDM signaling over multi-scale multi-lag channels. IEEE Signal Process Lett, 20(11):1118-1121.

[6]Cai LF, Pan X, Xu W, et al., 2009. Underwater acoustic MIMO communication based on active time reversal. Conf on Postgraduate Research in Microelectronics Electronics, p.45-48.

[7]Candy JV, Poggio AJ, Chambers DH, et al., 2005. Multichannel time-reversal processing for acoustic communications in a highly reverberant environment. J Acoust Soc Am, 118(4):2339-2354.

[8]Carrascosa PC, Stojanovic M, 2010. Adaptive channel estimation and data detection for underwater acoustic MIMO-OFDM systems. IEEE J Ocean Eng, 35(3):635-646.

[9]Carroll P, Zhou SL, Mahmood K, et al., 2012. On-demand asynchronous localization for underwater sensor networks. OCEANS, p.1-4.

[10]Casey K, Lim A, Dozier G, 2008. A sensor network architecture for tsunami detection and response. Int J Distr Sens Netw, 4(1):28-43.

[11]Catipovic J, Deffenbaugh M, Freitag L, et al., 1989. An acoustic telemetry system for deep ocean mooring data acquisition and control. OCEANS, p.887-892.

[12]Chen ZR, Zheng YR, Wang JT, et al., 2013. Synchronization and Doppler scale estimation with dual PN padding TDS-OFDM for underwater acoustic communication. OCEANS, p.1-4.

[13]Cho SE, Song HC, Hodgkiss WS, 2013. Multiuser acoustic communications with mobile users. J Acoust Soc Am, 133(2):880-890.

[14]Climent S, Capella JV, Meratnia N, et al., 2012. Underwater sensor networks: a new energy efficient and robust architecture. Sensors, 12(1):704-731.

[15]Climent S, Sanchez A, Capella JV, et al., 2014. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers. Sensors, 14(1):795-833.

[16]Ebihara T, Leus G, 2016. Doppler-resilient orthogonal signal-division multiplexing for underwater acoustic communication. IEEE J Ocean Eng, 41(2):408-427.

[17]Ebihara T, Mizutani K, 2014. Underwater acoustic communication with an orthogonal signal division multiplexing scheme in doubly spread channels. IEEE J Ocean Eng, 39(1):47-58.

[18]Edelmann GF, Akal T, Hodgkiss WS, et al., 2002. An initial demonstration of underwater acoustic communication using time reversal. IEEE J Ocean Eng, 27(3):602-609.

[19]Edelmann GF, Song HC, Kim S, et al., 2005. Underwater acoustic communications using time reversal. IEEE J Ocean Eng, 30(4):852-864.

[20]Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, et al., 2002. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun Mag, 40(4):58-66.

[21]Fan GY, Chen HF, Xie L, et al., 2013. A hybrid reservation-based MAC protocol for underwater acoustic sensor networks. Ad Hoc Netw, 11(3):1178-1192.

[22]Fink M, 2001. Time reversed acoustics. Phys Today, 50(3):34-40.

[23]Freitag L, Stojanovic M, Kilfoyle D, et al., 2004. High-rate phase-coherent acoustic communication: a review of a decade of research and a perspective on future challenges. Proc 7th European Conf on Underwater Acoustic, p.1-6.

[24]Green MD, Rice JA, 2000. Channel-tolerant FH-MFSK acoustic signaling for undersea communications and networks. IEEE J Ocean Eng, 25(1):28-39.

[25]Guo Y, Liu Y, 2013. Localization for anchor-free underwater sensor networks. Comput Electr Eng, 39(6):1812-1821.

[26]Han J, Chepuri SP, Zhang QF, et al., 2018. Iterative per-vector equalization for orthogonal signal-division multiplexing over time-varying underwater acoustic channels. IEEE J Ocean Eng, PP(99):1-16.

[27]Hao J, Zheng YR, Wang JT, et al., 2012. Dual PN padding TDS-OFDM for underwater acoustic communication. OCEANS, p.1-4.

[28]Hayward TJ, Yang TC, 2007. Single- and multi-channel underwater acoustic communication channel capacity: a computational study. J Acoust Soc Am, 122(3):1652.

[29]He C, Huang J, Zhang Q, et al., 2009. Single carrier frequency domain equalizer for underwater wireless communication. WRI Int Conf on Communications and Mobile Computing, p.186-190.

[30]He C, Jing L, Xi R, et al., 2017. Improving passive time reversal underwater acoustic communications using subarray processing. Sensors, 17(4):E937.

[31]Huang J, Sun J, He C, et al., 2005. Experimental research on high rate OFDM underwater acoustic communication. National Academic Conf on Communication Theory and Signal Processing, p.311-315 (in Chinese).

[32]Huang J, He C, Zhang Q, et al., 2007. Cyclic prefixed single carrier transmission for underwater acoustic communication. IEEE TENCON, p.1-4.

[33]Huang J, Zhou SL, Willett P, 2008. Nonbinary LDPC coding for multicarrier underwater acoustic communication. IEEE J Sel Areas Commun, 26(9):1684-1696.

[34]Huang J, Huang JZ, Berger CR, et al., 2010. Iterative sparse channel estimation and decoding for underwater MIMO-OFDM. EURASIP J Adv Signal Process, 2010(1):460379.

[35]Huang J, Zhou S, Huang J, et al., 2011. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE J Sel Top Signal Process, 5(8):1524-1536.

[36]Jurdak R, Aguiar P, Baldi P, et al., 2007. Software modems for underwater sensor networks. OCEANS, p.1-6.

[37]Kang T, Iltis RA, 2008. ewblock Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems. IEEE J Sel Areas Commun, 26(9):1650-1661.

[38]Kilfoyle DB, Baggeroer AB, 2000. The state of the art in underwater acoustic telemetry. IEEE J Ocean Eng, 25(1):4-27.

[39]Kilfoyle DB, Preisig JC, Baggeroer AB, 2003. Spatial modulation over partially coherent multiple-input/multiple-output channels. IEEE Trans Signal Process, 51(3):794-804.

[40]Kilfoyle DB, Preisig JC, Baggeroer AB, 2005. Spatial modulation experiments in the underwater acoustic channel. IEEE J Ocean Eng, 30(2):406-415.

[41]Kredo K II, Djukic P, Mohapatra P, 2009. Stump: exploiting position diversity in the staggered TDMA underwater MAC protocol. IEEE INFOCOM, p.2961-2965.

[42]Kumar P, Kumar P, Priyadarshini P, et al., 2012. Underwater acoustic sensor network for early warning generation. OCEANS, p.1-6.

[43]Kuperman WA, Hodgkiss WS, Song HC, et al., 1998. Phase conjugation in the ocean: experimental demonstration of an acoustic time-reversal mirror. J Acoust Soc Am, 103(5):25-40.

[44]Labat J, Lapierre G, Trubuil J, 2003. Iterative equalization for underwater acoustic channels potentiality for the tpident system. OCEANS, p.1547-1553.

[45]Lam WK, Ormondroyd RF, 1997. A coherent COFDM modulation system for a time-varying frequency-selective underwater acoustic channel. 7th Int Conf on Electronic Engineering in Oceanography&Mdash;Technology Transfer from Research to Industry, p.198-203.

[46]Leus G, van Walree PA, 2008. Multiband OFDM for covert acoustic communications. IEEE J Sel Areas Commun, 26(9):1662-1673.

[47]Li BS, Zhou SL, Stojanovic M, et al., 2006. Pilot-tone based ZP-OFDM demodulation for an underwater acoustic channel. OCEANS, p.1-5.

[48]Li BS, Zhou SL, Stojanovic M, et al., 2007a. MIMO-OFDM over an underwater acoustic channel. OCEANS, p.1-6.

[49]Li BS, Zhou SL, Stojanovic M, et al., 2007b. Non-uniform Doppler compensation for zero-padded OFDM over fast-varying underwater acoustic channels. OCEANS, p.1-6.

[50]Li BS, Huang J, Zhou SL, et al., 2008a. Further results on high-rate MIMO-OFDM underwater acoustic communications. OCEANS, p.1-6.

[51]Li BS, Zhou SL, Stojanovic M, et al., 2008b. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE J Ocean Eng, 33(2):198-209.

[52]Li BS, Huang J, Zhou SL, et al., 2009. MIMO-OFDM for high-rate underwater acoustic communications. IEEE J Ocean Eng, 34(4):634-644.

[53]Li JH, Zakharov YV, 2018. Efficient use of space-time clustering for underwater acoustic communications. IEEE J Ocean Eng, 43(1):173-183.

[54]Li Y, Huang HN, 2010. The design and experiment of a software-defined acoustic modem for underwater sensor network. OCEANS, p.1-4.

[55]Muquet B, Wang ZD, Giannakis GB, et al., 2002. Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Trans Commun, 50(12):2136-2148.

[56]Otnes R, Eggen TH, 2008. Underwater acoustic communications: long-term test of turbo equalization in shallow water. IEEE J Ocean Eng, 33(3):321-334.

[57]Pajovic M, Preisig JC, 2015. Performance analysis and optimal design of multichannel equalizer for underwater acoustic communications. IEEE J Ocean Eng, 40(4):759-774.

[58]Pompili D, Akyildiz IF, 2009. Overview of networking protocols for underwater wireless communications. IEEE Commun Mag, 47(1):97-102.

[59]Pompili D, Melodia T, Akyildiz IF, 2009. A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Trans Wirel Commun, 8(4):1899-1909.

[60]Porter MB, Liu YC, 1994. Finite-element ray tracing. Int Conf on Theoretical and Computational Acoustics, p.947-956.

[61]Porter MB, Qarabaqi P, Stojanovic M, et al., 2014. BELLHOP. http://oalib.hlsresearch.com/Rays/linebreak index.html

[62]Preisig JC, 2005. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment. J Acoust Soc Am, 118(1):263-278.

[63]Qarabaqi P, Stojanovic M, 2013. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE J Ocean Eng, 38(4):701-717.

[64]Rafati A, Lou H, Xiao CS, 2014. Soft-decision feedback turbo equalization for LDPC-coded MIMO underwater acoustic communications. IEEE J Ocean Eng, 39(1):90-99.

[65]Riedl T, Singer A, 2013. Must-read: multichannel sample-by-sample turbo resampling equalization and decoding. OCEANS, p.1-5.

[66]Rouseff D, Badiey M, Song AJ, 2007. Propagation physics effects on coherent underwater acoustic communications: results from KauaiEx 2003. OCEANS, p.1-4.

[67]Roy S, Duman TM, Ghazikhanian L, et al., 2004. Enhanced underwater acoustic communication performance using space-time coding and processing. OCEANS, p.26-33.

[68]Roy S, Duman TM, McDonald V, et al., 2007. High-rate communication for underwater acoustic channels using multiple transmitters and space time coding: receiver structures and experimental results. IEEE J Ocean Eng, 32(3):663-688.

[69]Roy S, Duman TM, Mcdonald VK, 2009. Error rate improvement in underwater MIMO communications using sparse partial response equalization. IEEE J Ocean Eng, 34(2):181-201.

[70]Rugini L, Banelli P, Leus G, 2006. Low-complexity banded equalizers for OFDM systems in Doppler spread channels. EURASIP J Adv Signal Process, 2006:07404.

[71]Sang EF, Xu XK, Qiao G, et al., 2009. Application study of turbo code for underwater acoustic communication based on OFDM. J Harbin Eng Univ, 30(1):60-66 (in Chinese).

[72]Scussel KF, Rice JA, Merriam S, 1997. A new MFSK acoustic modem for operation in adverse underwater channels. OCEANS, p.247-254.

[73]Sharif BS, Neasham J, Hinton OR, et al., 2000. A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE J Ocean Eng, 25(1):52-61.

[74]Shimura T, Ochi H, Watanabe Y, et al., 2010. Experiment results of time-reversal communication at the range of 300 km. Jpn J Appl Phys, 49(7):07HG11.

[75]Shimura T, Ochi H, Watanabe Y, et al., 2012a. Demonstration of time reversal communication combined with spread spectrum at the range of 900 km in deep ocean. Acoust Sci Technol, 33(2):113-116.

[76]Shimura T, Watanabe Y, Ochi H, et al., 2012b. Long-range time reversal communication in deep water: experimental results. J Acoust Soc Am, 132(1):EL49-EL53.

[77]Shimura T, Kida Y, Deguchi M, et al., 2017. Experimental study on multiple-input/multiple-output communication with time reversal in deep ocean. Jpn J Appl Phys, 56(7S1):07JG03.

[78]Song A, Badiey M, 2012. Time reversal acoustic communication for multiband transmission. J Acoust Soc Am, 131(4):EL283-EL288.

[79]Song A, Badiey M, McDonald VK, et al., 2011. Time reversal receivers for high data rate acoustic multiple-input multiple-output communication. IEEE J Ocean Eng, 36(4):525-538.

[80]Song HC, Hodgkiss WS, 2013. Efficient use of bandwidth for underwater acoustic communication. J Acoust Soc Am, 134(2):905-908.

[81]Song HC, Hodgkiss WS, Kuperman WA, et al., 2006. Improvement of time-reversal communications using adaptive channel equalizers. IEEE J Ocean Eng, 31(2):487-496.

[82]Stojanovic M, 1995. Underwater acoustic communications. Proc Electro/Int, p.435-440.

[83]Stojanovic M, 1996. Recent advances in high-speed underwater acoustic communications. IEEE J Ocean Eng, 21(2):125-136.

[84]Stojanovic M, 2006a. Low complexity OFDM detector for underwater acoustic channels. OCEANS, p.1-6.

[85]Stojanovic M, 2006b. On the relationship between capacity and distance in an underwater acoustic communication channel. SIGMOBILE Mob Comput Commun Rev, 11(4):41-47.

[86]Stojanovic M, 2008. Underwater acoustic communications: design considerations on the physical layer. 5$^rm th$ Annual Conf on Wireless on Demand Network Systems and Services, p.1-10.

[87]Stojanovic M, Catipovic J, Proakis JG, 1993. Adaptive multichannel combining and equalization for underwater acoustic communications. J Acoust Soc Am, 94(3):1621-1631.

[88]Stojanovic M, Catipovic JA, Proakis JG, 1994. Phasecoherent digital communications for underwater acoustic channels. IEEE J Ocean Eng, 19(1):100-111.

[89]Stojanovic M, Freitag L, Johnson M, 1999. Channel-estimation-based adaptive equalization of underwater acoustic signals. OCEANS, p.590-595.

[90]Syed AA, Ye W, Heidemann J, et al., 2007. Understanding spatio-temporal uncertainty in medium access with aloha protocols. 2nd Workshop on Underwater Networks, p.41-48.

[91]Tao J, Zheng YR, Xiao CS, et al., 2010. Robust MIMO underwater acoustic communications using turbo block decision-feedback equalization. IEEE J Ocean Eng, 35(4):948-960.

[92]Thornton B, Bodenmann A, Asada A, et al., 2012. Acoustic and visual instrumentation for survey of manganese crusts using an underwater vehicle. OCEANS, p.1-10.

[93]Thorp WH, 1967. Analytic description of the low frequency attenuation coefficient. J Acoust Soc Am, 42(1):270.

[94]Tindle CT, 2002. Wavefronts and waveforms in deep-water sound propagation. J Acoust Soc Am, 112(2):464-475.

[95]Trevathan J, Johnstone R, Chiffings T, et al., 2012. SEMAT – the next generation of inexpensive marine environmental monitoring and measurement systems. Sensors, 12(7):9711-9748.

[96]van Walree PA, 2013. Propagation and scattering effects in underwater acoustic communication channels. IEEE J Ocean Eng, 38(4):614-631.

[97]Wang ZH, Zhou SL, Giannakis GB, et al., 2012. Frequency-domain oversampling for zero-padded OFDM in underwater acoustic communications. IEEE J Ocean Eng, 37(1):14-24.

[98]Watfa MK, Selman S, Denkilkian H, 2010. UW-MAC: an underwater sensor network MAC protocol. Int J Commun Syst, 23(4):485-506.

[99]Wei ZF, Huang JG, 2006. MFSK based multi-carrier UWA communication system and lake experiment. Wirel Commun Technol, 15(2):9-13 (in Chinese).

[100]Wu FF, Huang JG, He CB, 2010. Experimental research on long-range high-speed underwater acoustic communication. Comput Meas Contr, 18(8):1837-1839 (in Chinese).

[101]Xia ML, Xu W, Pan X, 2012. Time reversal based channel tracking for underwater acoustic communications. J Acoust Soc Am, 131(4):3277.

[102]Xia ML, Rouseff D, Ritcey JA, et al., 2014. Underwater acoustic communication in a highly refractive environment using SC-CFDE. IEEE J Ocean Eng, 39(39):491-499.

[103]Xu ZY, Zakharov YV, Kodanev VP, 2007. Space-time signal processing of OFDM signals in fast-varying underwater acoustic channel. OCEANS, p.1-6.

[104]Yalcuk A, Postalcioglu S, 2015. Evaluation of pool water quality of trout farms by fuzzy logic: monitoring of pool water quality for trout farms. Int J Environ Sci Technol, 12(5):1503-1514.

[105]Yang TC, 2004. Performance comparisons between passive phase conjugation and decision feedback equalizer for underwater acoustic communications. J Acoust Soc Am, 115(5):2505-2506.

[106]Yang TC, 2005. Correlation-based decision-feedback equalizer for underwater acoustic communications. IEEE J Ocean Eng, 30(4):865-880.

[107]Yang TC, 2007. A study of spatial processing gain in underwater acoustic communications. IEEE J Ocean Eng, 32(3):689-709.

[108]Yang TC, 2012. Properties of underwater acoustic communication channels in shallow water. J Acoust Soc Am, 131(1):129-145.

[109]Yeo HK, Sharif BS, Hinton OR, et al., 2000. Improved RLS algorithm for time-variant underwater acoustic communications. Electron Lett, 36(2):191-192.

[110]Yerramalli S, Mitra U, 2011. Optimal resampling of OFDM signals for multiscale-multilag underwater acoustic channels. IEEE J Ocean Eng, 36(1):126-138.

[111]Yerramalli S, Stojanovic M, Mitra U, 2012. Partial FFT demodulation: a detection method for highly Doppler distorted OFDM systems. IEEE Trans Signal Process, 60(11):5906-5918.

[112]Zhang J, Zheng YR, 2010. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications. J Acoust Soc Am, 128(5):2910-9.

[113]Zhang J, Zheng YR, 2011. Frequency-domain turbo equalization with soft successive interference cancellation for single carrier MIMO underwater acoustic communications. IEEE Trans Wirel Commun, 10(9):2872-2882.

[114]Zheng YR, Xiao CS, Yang TC, et al., 2007. Frequency-domain channel estimation and equalization for single carrier underwater acoustic communications. OCEANS, p.1-6.

[115]Zheng YR, Xiao CS, Liu X, et al., 2008. Further results on frequency-domain channel equalization for single carrier underwater acoustic communications. OCEANS, p.1-6.

[116]Zheng YR, Xiao CS, Yang TC, et al., 2010. Frequency-domain channel estimation and equalization for shallow-water acoustic communications. Phys Commun, 3(1):48-63.

[117]Zoksimovski A, Rappaport C, Sexton D, et al., 2012. Underwater electromagnetic communications using conduction: channel characterization. Ad Hoc Netw, 34:42-51.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE