Full Text:   <504>

Summary:  <89>

CLC number: TP391

On-line Access: 2019-12-10

Received: 2018-06-21

Revision Accepted: 2018-10-18

Crosschecked: 2019-11-12

Cited: 0

Clicked: 902

Citations:  Bibtex RefMan EndNote GB/T7714


Xin-yi Bi


Ran Liao


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.11 P.1543-1550


Grazing incidence polarized light imaging of footwear prints

Author(s):  Xin-yi Bi, Rui-fang Han, Ran Liao, Wu-sheng Feng, Da Li, Xue-jie Zhang, Hui Ma

Affiliation(s):  Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; more

Corresponding email(s):   liao.ran@sz.tsinghua.edu.cn

Key Words:  Polarization, Image enhancement, Scattering, Particle

Xin-yi Bi, Rui-fang Han, Ran Liao, Wu-sheng Feng, Da Li, Xue-jie Zhang, Hui Ma. Grazing incidence polarized light imaging of footwear prints[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(11): 1543-1550.

@article{title="Grazing incidence polarized light imaging of footwear prints",
author="Xin-yi Bi, Rui-fang Han, Ran Liao, Wu-sheng Feng, Da Li, Xue-jie Zhang, Hui Ma",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Grazing incidence polarized light imaging of footwear prints
%A Xin-yi Bi
%A Rui-fang Han
%A Ran Liao
%A Wu-sheng Feng
%A Da Li
%A Xue-jie Zhang
%A Hui Ma
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 11
%P 1543-1550
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800383

T1 - Grazing incidence polarized light imaging of footwear prints
A1 - Xin-yi Bi
A1 - Rui-fang Han
A1 - Ran Liao
A1 - Wu-sheng Feng
A1 - Da Li
A1 - Xue-jie Zhang
A1 - Hui Ma
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 11
SP - 1543
EP - 1550
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800383

Footwear prints are important evidence in criminal investigation. They represent changes in the surface morphology due to disturbance to fine particle distributions. Existing non-contact optical detection methods usually measure the light intensity contrasts between the footwear prints and the ground, which can be enhanced by grazing incident illumination. We take polarization images of footwear prints on different types of floors using a commercial single lens reflex color camera. Results show that adding linear polarizers in front of the camera lens and light source improves the contrast of footwear print images. The best contrasts are achieved in degree of linear polarization. In addition, the three-color channels of the camera can be used to examine the spectral features of the polarization images. According to the experimental results, the best contrast is obtained at the blue channel. The current work shows that grazing incidence polarized light imaging can effectively enhance the contrast of the footwear prints against the floors, which would help obtain footwear evidence in criminal investigation.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Anderson K, Gaston KJ, 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front Ecol Environ, 11(3):138-146.

[2]Bennett MR, Huddart D, Gonzalez S, 2009. Preservation and analysis of three-dimensional footwear evidence in soils: the application of optical laser scanning. In: Ritz K, Dawson L, Miller D, (Eds.) Criminal and Environmental Soil Forensics. Springer, Dordrecht, p.445.

[3]Bodziak WJ, 1999. Footwear Impression Evidence: Detection, Recovery and Examination (2nd Ed.). CRC Press, Florida, USA.

[4]Bohren CF, Huffman DR, 1983. Absorption and Scattering of Light by Small Particles. Wiley, New York, USA.

[5]Cai FH, Lu W, Shi WX, et al., 2017. A mobile device-based imaging spectrometer for environmental monitoring by attaching a lightweight small module to a commercial digital camera. Sci Rep, 7:15602.

[6]del Moral P, 2013. Mean Field Simulation for Monte Carlo Integration. CRC Press, Florida, USA.

[7]Ghosh N, Vitkin IA, 2011. Tissue polarimetry: concepts, challenges, applications, and outlook. J Biomed Opt, 16(11), Article 110801.

[8]He C, Chang JT, Wang Y, et al., 2015. Linear polarization optimized Stokes polarimeter based on four-quadrant detector. Appl Opt, 54(14):4458-4463.

[9]Herod DW, Menzel ER, 1982. Laser detection of latent fingerprints: ninhydrin followed by zinc chloride. J Forens Sci, 27(3):513-518.

[10]Krishan K, 2007. Individualizing characteristics of footprints in Gujjars of North India—forensic aspects. Forens Sci Int, 169(2-3):137-144.

[11]Li KW, Yu RF, Zhang W, 2011. Roughness and slipperiness of floor surface: tactile sensation and perception. Saf Sci, 49(3):508-512.

[12]Li XP, Liao R, Ma H, et al., 2018. Polarimetric learning: a Siamese approach to learning distance metrics of algal Mueller matrix images. Appl Opt, 57(14):3829-3837.

[13]Li ZW, Wei CH, Li Y, et al., 2011. Research of shoeprint image stream retrieval algorithm with scale-invariance feature transform. Proc Int Conf on Multimedia Technology, p.5488-5491.

[14]Liou KN, Takano Y, Yang P, 2013. Intensity and polarization of dust aerosols over polarized anisotropic surfaces. J Quant Spectrosc Radiat Transf, 127:149-157.

[15]Migliavacca M, Galvagno M, Cremonese E, et al., 2011. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric Forest Meteor, 151(10):1325-1337.

[16]Mora M, Sbarbaro D, 2005. A robust footprint detection using color images and neural networks. Iberoamerican Congress on Pattern Recognition, p.311-318.

[17]Nakajima K, Mizukami Y, Tanaka K, et al., 2000. Footprint- based personal recognition. IEEE Trans Biomed Eng, 47(11):1534-1537.

[18]Namer E, Shwartz S, Schechner YY, 2009. Skyless polarimetric calibration and visibility enhancement. Opt Expr, 17(2):472-493.

[19]Renaud G, Lazzari R, Leroy F, 2009. Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep, 64(8):255-380.

[20]Shaler RC, 2011. Crime Scene Forensics: a Scientific Method Approach. CRC Press, Florida, USA.

[21]Sheets HD, Gross S, Langenburg G, et al., 2013. Shape measurement tools in footwear analysis: a statistical investigation of accidental characteristics over time. Forens Sci Int, 232(1-3):84-91.

[22]Shin D, Pierce MC, Gillenwater AM, et al., 2010. A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging. PLOS ONE, 5(6), Article e11218.

[23]Snik F, Craven-Jones J, Escuti M, et al., 2014. An overview of polarimetric sensing techniques and technology with applications to different research fields. SPIE, p.1-20.

[24]Svensen Ø, Stamnes JJ, Kildemo M, et al., 2011. Mueller matrix measurements of algae with different shape and size distributions. Appl Opt, 50(26):5149-5157.

[25]Tuchin VV, 2016. Polarized light interaction with tissues. J Biomed Opt, 21(7):0711147.

[26]Tyo JS, Goldstein DL, Chenault DB, et al., 2006. Review of passive imaging polarimetry for remote sensing applications. Appl Opt, 45(22):5453-5469.

[27]Wagle MSUY, 2015. Footwear Impression Analysis: Implementing a Model for Automatic Shoeprint Recognition to Use in Forensic Science. MD Thesis, Blekinge Institute of Technology, Blekinge, Sweden.

[28]Wang Y, He HH, Chang JT, et al., 2016. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J Biomed Opt, 21(7):0711127.

[29]Wang Y, Liao R, Dai J, et al., 2018. Differentiation of suspended particles by polarized light scattering at 120°. Opt Expr, 26(17):22419-22431.

[30]Webster JG, 1998. The Measurement, Instrumentation and Sensors Handbook. CRC Press, Florida, USA.

[31]Weinzierl B, Petzold A, Esselborn M, et al., 2009. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus B Chem Phys Meteorol, 61(1):96- 117.

[32]Winkelmann W, 1987. Use of footprints, especially forefoot prints, from the forensic viewpoint. Z Rechtsmed, 99(2):121-128.

[33]Wolff LB, 1997. Polarization vision: a new sensory approach to image understanding. Image Vis Comput, 15(2):81- 93.

[34]York T, Powell SB, Gao S, et al., 2014. Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications. Proc IEEE, 102(10):1450-1469.

[35]Yun TL, Zeng N, Li W, et al., 2009. Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt Expr, 17(19):16590-16602.

[36]Zinov’eva TV, 2008. Investigation of the linear polarization in infrared absorption bands. Astron Lett, 34(2):118-132.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE