CLC number: TN929.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-07-14
Cited: 0
Clicked: 5515
Citations: Bibtex RefMan EndNote GB/T7714
Jun Li, Yihong Qi, Jun Fan. Over-the-air measurement for MIMO systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(8): 1046-1058.
@article{title="Over-the-air measurement for MIMO systems",
author="Jun Li, Yihong Qi, Jun Fan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="8",
pages="1046-1058",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000230"
}
%0 Journal Article
%T Over-the-air measurement for MIMO systems
%A Jun Li
%A Yihong Qi
%A Jun Fan
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 8
%P 1046-1058
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000230
TY - JOUR
T1 - Over-the-air measurement for MIMO systems
A1 - Jun Li
A1 - Yihong Qi
A1 - Jun Fan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 8
SP - 1046
EP - 1058
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000230
Abstract: over-the-air (OTA) testing is an industry standard practice for evaluating transceiver performance in wireless devices. For the fifth generation (5G) and beyond wireless systems with high integration, OTA testing is probably the only reliable method to accurately measure the transceiver performance, suitable for certification as well as for providing feedback for design verification and optimization. Further, multiple-input multiple-output (MIMO) technology is extensively applied for stable connection, high throughput rate, and low latency. In this paper, we provide an overview of the three main methods for evaluating the MIMO OTA performance, namely, the multiprobe anechoic chamber (MPAC) method, the reverberation chamber plus channel emulator (RC+CE) method, and the radiated two-stage (RTS) method, with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.
[1]3GPP, 2017. Analysis of Harmonization Results. Technical Report R4-1704578.
[2]3GPP, 2018a. Study on Channel Model for Frequencies from 0.5 to 100 GHz. Technical Report TR 38.901.
[3]3GPP, 2018b. Study on Evaluation Methodology of New Vehicle-to-Everything V2X Use Cases for LTE and NR. Technical Report TR 37.885.
[4]3GPP, 2018c. Universal Terrestrial Radio Access (UTRA) and Evolved UTRA (E-UTRA); User Equipment (UE) Over the Air (OTA) Performance; Conformance Testing. Technical Specification TS 37.544.
[5]Ali E, Ismail M, Nordin R, et al., 2017. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Front Inform Technol Electron Eng, 18(6):753-772.
[6]Alkhateeb A, Mo JH, Gonzalez-Prelcic N, et al., 2014. MIMO precoding and combining solutions for millimeter-wave systems. IEEE Commun Mag, 52(12):122-131.
[7]Al-Mejibli I, Al-Majeed S, 2018. Challenges of using MIMO channel technology in 5G wireless communication systems. Majan Int Conf, p.1-5.
[8]CATR, 2017. Harmonization Analysis. Technical Report R4-1704661. Intel Corporation, Santa Clara, CA, USA.
[9]Chen XM, 2014. Experimental investigation and modeling of the throughput of a 2×2 closed-loop MIMO system in a reverberation chamber. IEEE Trans Antenn Propag, 62(9):4832-4835.
[10]Chen XM, Kildal PS, Carlsson J, et al., 2011. Comparison of ergodic capacities from wideband MIMO antenna measurements in reverberation chamber and anechoic chamber. IEEE Antenn Wirel Propag Lett, 10:446-449.
[11]Cho YS, Kim J, Yang WY, et al., 2010. MIMO channel models. In: MIMO-OFDM Wireless Communications with MATLAB®. John Wiley & Sons, Washington DC, USA, p.71-109.
[12]CTIA, 2017. Test Plan for 2×2 Downlink MIMO and Transmit Diversity Over-the-Air Performance. CTIA, Washington DC, USA.
[13]Fan W, Hentilä L, Kyösti P, et al., 2017. Test zone size characterization with measured MIMO throughput for simulated MPAC configurations in conductive setups. IEEE Trans Veh Technol, 66(11):10532-10536.
[14]Gao HQ, Wang WM, Wu YL, et al., 2019. A virtual over-the-air method for 5G massive MIMO base station testing with flexible virtual probes. IEEE Access, 7:108474-108485.
[15]Hekkala A, Kyösti P, Kyröläinen J, et al., 2017. Performance evaluation of sectored MPAC for 5G UE antenna systems. 6th Asia-Pacific Conf on Antennas and Propagation, p.1-3.
[16]Huawei, 2017. CTIA & CCSA Combined Comparison Test Plan and Proposal. Technical Report MOSG170406.
[17]Jing Y, Rumney M, Kong HW, et al., 2018. Overview of 5G UE OTA performance test challenges and methods. IEEE MTT-S Int Wireless Symp, p.1-4.
[18]Li J, Qi YH, Yu W, et al., 2021. Temperature effects in OTA MIMO measurement. IEEE Trans Instrum Meas, 70:3501209.
[19]Li JZ, Ai B, He RS, et al., 2017. Indoor massive multiple-input multiple-output channel characterization and performance evaluation. Front Inform Technol Electron Eng, 18(6):773-787.
[20]Qi YH, Yang G, Liu L, et al., 2017. 5G over-the-air measurement challenges: overview. IEEE Trans Electromagn Compat, 59(6):1661-1670.
[21]Rumney M, Kong HW, Jing Y, et al., 2016. Recent advances in the radiated two-stage MIMO OTA test method and its value for antenna design optimization. Proc 10th European Conf on Antennas and Propagation, p.1-5.
[22]Sauter M, 2013. Evolution from 2G over 3G to 4G. In: 3G, 4G and Beyond—Bringing Networks, Devices and the Web Together. John Wiley & Sons, Washington DC, USA, p.1-7.
[23]Shen PH, Qi YH, Yu W, et al., 2018. A decomposition method for MIMO OTA performance evaluation. IEEE Trans Veh Technol, 67(9):8184-8191.
[24]Shen PH, Qi YH, Yu W, et al., 2019a. OTA measurement for IoT wireless device performance evaluation: challenges and solutions. IEEE Int Things, 6(1):1223-1237.
[25]Shen PH, Qi YH, Yu W, et al., 2019b. An RTS-based near-field MIMO measurement solution—a step toward 5G. IEEE Trans Microw Theory Techn, 67(7):2884-2893.
[26]Shen PH, Qi YH, Wang XB, et al., 2020. A 2×2 MIMO throughput analytical model for RF front end optimization. J Commun Inform Netw, 5(2):194-203.
[27]Valenzuela-Valdés JF, Lozano-Guerrero A, Sánchez-Heredia JD, et al., 2013. Measuring distributed MIMO system in reverberation chamber. IEEE Antenn Wirel Propag Lett, 12:1586-1589.
[28]Xiao J, Foegelle M, 2016. An improved method for power and SIR validation on MPAC MIMO OTA system. Asia-Pacific Int Symp on Electromagnetic Compatibility, p.499-502.
[29]Yadav A, Dobre OA, 2018. All technologies work together for good: a glance at future mobile networks. IEEE Wirel Commun, 25(4):10-16.
[30]Yu W, Qi YH, Liu KF, et al., 2014. Radiated two-stage method for LTE MIMO user equipment performance evaluation. IEEE Trans Electromagn Compat, 56(6):1691-1696.
Open peer comments: Debate/Discuss/Question/Opinion
<1>