Full Text:   <9405>

Summary:  <1466>

CLC number: TN248; V254.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-11-24

Cited: 0

Clicked: 5081

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Junshan He

https://orcid.org/0000-0003-1705-629X

Lili Tao

https://orcid.org/0000-0002-7833-2123

Bo Zhou

https://orcid.org/0000-0002-0701-5331

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.3 P.296-302

http://doi.org/10.1631/FITEE.2000339


Preparation of ultrathin ReS2 nanosheets and their application to Q-switched Er-doped fiber lasers


Author(s):  Junshan He, Guohua Zeng, Shaoxian Liu, Haiming Lu, Ruixian Xie, Jingjing Qi, Lili Tao, Bo Zhou

Affiliation(s):  School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; more

Corresponding email(s):   taoll@gdut.edu.cn, zhoubo@scut.edu.cn

Key Words:  Rhenium disulfide, Saturable absorber, Two-dimensional materials, Q-switched fiber laser


Junshan He, Guohua Zeng, Shaoxian Liu, Haiming Lu, Ruixian Xie, Jingjing Qi, Lili Tao, Bo Zhou. Preparation of ultrathin ReS2 nanosheets and their application to Q-switched Er-doped fiber lasers[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 296-302.

@article{title="Preparation of ultrathin ReS2 nanosheets and their application to Q-switched Er-doped fiber lasers",
author="Junshan He, Guohua Zeng, Shaoxian Liu, Haiming Lu, Ruixian Xie, Jingjing Qi, Lili Tao, Bo Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="3",
pages="296-302",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000339"
}

%0 Journal Article
%T Preparation of ultrathin ReS2 nanosheets and their application to Q-switched Er-doped fiber lasers
%A Junshan He
%A Guohua Zeng
%A Shaoxian Liu
%A Haiming Lu
%A Ruixian Xie
%A Jingjing Qi
%A Lili Tao
%A Bo Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 296-302
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000339

TY - JOUR
T1 - Preparation of ultrathin ReS2 nanosheets and their application to Q-switched Er-doped fiber lasers
A1 - Junshan He
A1 - Guohua Zeng
A1 - Shaoxian Liu
A1 - Haiming Lu
A1 - Ruixian Xie
A1 - Jingjing Qi
A1 - Lili Tao
A1 - Bo Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 296
EP - 302
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000339


Abstract: 
We study the exfoliation of ultrathin ReS2 nanosheets from the prepared ReS2 powder and their application to Q-switched Er-doped fiber laser. XRD, Raman, and XPS spectra confirm the successful preparation of the layered ReS2. SEM images show that the obtained ReS2 sheets have lateral size below 200 nm. The thickness of the ReS2 nanosheets is smaller than 5 nm according to the AFM results. ReS2/PVA film is applied as a saturable absorber in an Er-doped q-switched fiber laser, and a minimum pulse duration of 2.4 μs and an output power of 1.25 mW are obtained, indicating the potential application to Q-switched lasers.

二硫化铼超薄纳米片的制备及其在调Q掺铒光纤激光器中的应用

何俊杉1,2,3,4,曾国华1,刘绍贤1,卢海明1,谢锐贤1,戚晶晶1
陶丽丽1,周博2,3,4
1广东工业大学材料与能源学院,中国广州市,510006
2华南理工大学发光材料与器件国家重点实验室,中国广州市,510641
3华南理工大学广东省光纤激光材料与应用技术重点实验室,中国广州市,510641
4华南理工大学广东省特种光纤材料与器件工程技术研究开发中心,中国广州市,510641
摘要:本文通过液相剥离法从自制二硫化铼粉末中制备二硫化铼超薄纳米片,并将其应用在调Q掺铒光纤激光器中。XRD、Raman和XPS表征结果证明具有层状结构二硫化铼的成功合成;通过SEM和AFM表征发现所制备的二硫化铼纳米片横向尺寸低于200 nm,厚度小于5 nm。将二硫化铼/PVA复合薄膜作为可饱和吸收体放入掺铒光纤激光器中可以获得调Q脉冲输出,脉冲宽度最窄为2.4 μs,输出功率为1.25 mW,揭示了二硫化铼在Q调制方面的潜在应用价值。

关键词:二硫化铼;可饱和吸收体;二维材料;调Q光纤激光器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen BH, Zhang XY, Wu K, et al., 2015. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt Expr, 23(20):26723-26737.

[2]Cui YD, Lu FF, Liu XM, 2017. Nonlinear saturable and polarization-induced absorption of rhenium disulfide. Sci Rep, 7:40080.

[3]Du J, Wang QK, Jiang GB, et al., 2014. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep, 4:6346.

[4]Du L, Jiang GB, Miao LL, et al., 2018. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator. Opt Mater Expr, 8(4):926-935.

[5]Feng YQ, Zhou W, Wang YJ, et al., 2015. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys Rev B, 92(5):054110.

[6]Guo J, Zhao JL, Hunag DZ, et al., 2019. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale, 11(13):6235-6242.

[7]Guo ZL, Wei AX, Zhao Y, et al., 2019. Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties. Appl Phys Lett, 114(15):153102.

[8]Hafeez M, Gan L, Li HQ, et al., 2016. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv Funct Mater, 26(25):4551-4560.

[9]He JS, Tao LL, Zhang H, et al., 2019. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 11(6):2577-2593.

[10]Huang WC, Li C, Gao LF, et al., 2020. Emerging black phosphorus analogue nanomaterials for high-performance device applications. J Mater Chem C, 8(4):1172-1197.

[11]Huang X, Yin ZY, Wu SX, et al., 2011. Graphene-based materials: synthesis, characterization, properties, and applications. Small, 7(14):1876-1902.

[12]Jariwala D, Voiry D, Jindal A, et al., 2016. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem Mater, 28(10):3352-3359.

[13]Lin MX, Peng QQ, Hou W, et al., 2019. 1.3 μm Q-switched solid-state laser based on few-layer ReS2 saturable absorber. Opt Laser Technol, 109:90-93.

[14]Liu EF, Long MS, Zeng JW, et al., 2016. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv Funct Mater, 26(12):1938-1944.

[15]Liu F, Zhao X, Yan XQ, et al., 2019. Ultrafast nonlinear absorption and carrier relaxation in ReS2 and ReSe2 films. J Appl Phys, 125(17):173105.

[16]Liu H, Luo AP, Wang FZ, et al., 2014. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Opt Lett, 39(15):4591-4594.

[17]Liu Y, An QW, Meng XQ, 2019. Controllable growth of vertical ReS2 nanosheets and nanorods by vapor transport method. J Mater Sci, 54(9):6807-6814.

[18]Luo ZQ, Huang YZ, Zhong M, et al., 2014. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber. J Lightw Technol, 32(24):4679-4686.

[19]Mak KF, Lee C, Hone J, et al., 2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105(13):136805.

[20]Manzeli S, Ovchinnikov D, Pasquier D, et al., 2017. 2D transition metal dichalcogenides. Nat Rev Mater, 2(8):17033.

[21]Mao D, Cui XQ, Gan XT, et al., 2018. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber. IEEE J Sel Top Quant Electron, 24(3):1100406.

[22]Qin JK, Qiu G, He W, et al., 2018. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv Funct Mater, 28(48):1806254.

[23]Su XC, Nie HK, Wang YR, et al., 2017. Few-layered ReS2 as saturable absorber for 2.8 μm solid state laser. Opt Lett, 42(17):3502-3505.

[24]Tao LL, Huang XW, He JS, et al., 2018. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photon Res, 6(7):750-755.

[25]Tongay S, Zhou J, Ataca C, et al., 2012. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett, 12(11):5576-5580.

[26]Wang QH, Kalantar-Zadeh K, Kis A, et al., 2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 7(11):699-712.

[27]Wang SX, Yu HH, Zhang HJ, et al., 2014. Broadband few-layer MoS2 saturable absorbers. Adv Mater, 26(21):3538-3544.

[28]Wang XY, Cheng PK, Tang CY, et al., 2018. Laser Q-switching with PtS2 microflakes saturable absorber. Opt Express, 26(10):13055-13060.

[29]Xing CY, Xie ZJ, Liang ZM, et al., 2017. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Opt Mater, 5(24):1700884.

[30]Xu X, Jiang M, Li D, et al., 2018. Passive Q-switching based on ReS2 saturable absorber in Er-doped fiber laser at 1532 nm. Opt Quant Electron, 50(1):39.

[31]Zeng LH, Lin SH, Li ZJ, et al., 2018. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater, 28(16):1705970.

[32]Zeng LH, Wu D, Lin SH, et al., 2019. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater, 29(1):1806878.

[33]Zhang K, Feng M, Ren YY, et al., 2018. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon Res, 6(9):893-899.

[34]Zhang M, Hu GH, Hu GQ, et al., 2015. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci Rep, 5:17482.

[35]Zhang Y, Chang TR, Zhou B, et al., 2014. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 9(2):111-115.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE