Full Text:   <504>

Summary:  <602>

CLC number: TP273

On-line Access: 2021-01-11

Received: 2020-07-22

Revision Accepted: 2020-08-26

Crosschecked: 2020-11-11

Cited: 0

Clicked: 1430

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jorge A. Torres

https://orcid.org/0000-0001-8759-4515

Sergej Čelikovský

https://orcid.org/0000-0002-9694-0528

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.1 P.68-78

http://doi.org/10.1631/FITEE.2000368


Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems


Author(s):  Jorge A. Torres, Arno Sonck, Sergej Čelikovský, Alma R. Dominguez

Affiliation(s):  Automatic Control Department, CINVESTAV, Mexico City 07360, Mexico; more

Corresponding email(s):   jtorres@ctrl.cinvestav.mx, gsonck@ctrl.cinvestav.mx, celikovs@utia.cas.cz, adomin@cinvestav.mx

Key Words:  Nonlinear observers, Adaptive observers, Coordinate change, Chemostat, Pollutant observation


Jorge A. Torres, Arno Sonck, Sergej Čelikovský, Alma R. Dominguez. Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(1): 68-78.

@article{title="Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems",
author="Jorge A. Torres, Arno Sonck, Sergej Čelikovský, Alma R. Dominguez",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="1",
pages="68-78",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000368"
}

%0 Journal Article
%T Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems
%A Jorge A. Torres
%A Arno Sonck
%A Sergej Čelikovský
%A Alma R. Dominguez
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 1
%P 68-78
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000368

TY - JOUR
T1 - Constant-gain nonlinear adaptive observers revisited: an application to chemostat systems
A1 - Jorge A. Torres
A1 - Arno Sonck
A1 - Sergej Čelikovský
A1 - Alma R. Dominguez
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 1
SP - 68
EP - 78
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000368


Abstract: 
This study deals with constant-gain adaptive observers for nonlinear systems, for which relatively few solutions are available for some particular cases. We introduce an asymptotic observer of constant gain for nonlinear systems that have linear input. This allows the observer design to be formulated within the linear matrix inequality paradigm provided that a strictly positive real condition between the input disturbance and the output is fulfilled. The proposed observer is then applied to a large class of nonlinear chemostat dynamical systems that are widely used in the fermentation process, cell cultures, medicine, etc. In fact, under standard practical assumptions, the necessary change of the chemostat state coordinates exists, allowing use of the constant-gain observer. Finally, the developed theory is illustrated by estimating pollutant concentration in a Spirulina maxima wastewater treatment facility.

再论常增益非线性自适应观测器:恒化器系统的应用


Jorge A. TORRES1,Arno SONCK1,Sergej ČELIKOVSKÝ2,Alma R. DOMÍNGUEZ3
1CINVESTAV自动控制系,墨西哥墨西哥城,07360
2捷克科学院信息理论与自动化所,捷克共和国布拉格,18200
3CINVESTAV生物技术与生物工程系,墨西哥墨西哥城,07360

摘要:本文研究非线性系统的常增益自适应观测器;对一些特殊情况,有效的解决方案很少。针对具有线性输入的非线性系统,介绍一种常增益渐近观测器,使得当输入扰动和输出间满足严格正实的条件时,可以利用线性矩阵不等式工具设计观测器。所设计的观测器被应用于一大类非线性恒化动态系统,这类系统广泛应用于发酵工艺、细胞培养、医学等。事实上,基于标准的实际假设,存在必要的恒化器状态坐标变换,允许运用常增益观测器。最后,利用极大螺旋藻污水处理设施中估计污染物浓度的例子验证所提理论方法。

关键词:非线性观测器;自适应观测器;坐标变换;恒化器;污染观测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bastin G, Dochain D, 1990. On-line Estimation and Adaptive Control of Bioreactors: a Volume in Process Measurement and Control. Elsevier, Amsterdam, the Netherlands.

[2]Bastin G, Gevers MR, 1988. Stable adaptive observers for nonlinear time-varying systems. IEEE Trans Autom Contr, 33(7):650-658.

[3]Besançon G, de León-Morales J, Huerta-Guevara O, 2006. On adaptive observers for state affine systems. Int J Contr, 79(6):581-591.

[4]Čelikovský S, Torres-Mu noz JA, Dominguez-Bocanegra AR, 2018. Adaptive high gain observer extension and its application to bioprocess monitoring. Kybernetika, 54(1):155-174.

[5]Diop S, Fliess M, 1991. Nonlinear observability, identifiability, and persistent trajectories. Proc 30th IEEE Conf on Decision and Control, p.714-719.

[6]Dochain D, 2008. Automatic Control of Bioprocesses. Wiley. https://www.wiley.com/en-mx/Automatic+Control+of+Bioprocesses-p-9781848210257

[7]Farza M, M’Saad M, Maatoug T, et al., 2009. Adaptive observers for nonlinearly parameterized class of nonlinear systems. Automatica, 45(10):2292-2299.

[8]Farza M, Bouraoui I, Ménard T, et al., 2014. Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs. Automatica, 50(11):2951-2960.

[9]Gauthier JP, Hammouri H, Othman S, 1992. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Autom Contr, 37(6):875-880.

[10]Hammouri H, Nadri M, 2013. An observer design for a class of implicit systems. Syst Contr Lett, 62(3):256-261.

[11]Karimi HR, Zapateiro M, Luo N, 2010. A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J Franklin Inst, 347(6):957-973.

[12]Kreisselmeier G, 1977. Adaptive observers with exponential rate of convergence. IEEE Trans Autom Contr, 22(1):2-8.

[13]Lafont F, Busvelle E, Gauthier JP, 2011. An adaptive high-gain observer for wastewater treatment systems. J Process Contr, 21(6):893-900.

[14]Liang XY, Zhang JF, Xia XH, 2008. Adaptive synchronization for generalized Lorenz systems. IEEE Trans Autom Contr, 53(7):1740-1746.

[15]Luders G, Narendra K, 1973. An adaptive observer and identifier for a linear system. IEEE Trans Autom Contr, 18(5):496-499.

[16]Marino R, Tomei P, 1995a. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans Autom Contr, 40(7):1300-1304.

[17]Marino R, Tomei P, 1995b. Nonlinear Control Design: Geometric, Adaptive, and Robust. Prentice Hall, Limited, London, UK.

[18]Mondal S, Chakraborty G, Bhattacharyy K, 2010. LMI approach to robust unknown input observer design for continuous systems with noise and uncertainties. Int J Contr Autom Syst, 8(2):210-219.

[19]Pourgholi M, Majd VJ, 2011. A nonlinear adaptive resilient observer design for a class of Lipschitz systems using LMI. Circ Syst Signal Process, 30(6):1401-1415.

[20]Raghavan S, Hedrick JK, 1994. Observer design for a class of nonlinear systems. Int J Contr, 59(2):515-528.

[21]Wu HS, 2013. A class of adaptive robust state observers with simpler structure for uncertain non-linear systems with time-varying delays. IET Contr Theory Appl, 7(2):218-227.

[22]Zhang Q, 2002. Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans Autom Contr, 47(3):525-529.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE