CLC number: TN928
On-line Access: 2021-04-15
Received: 2020-08-31
Revision Accepted: 2021-02-06
Crosschecked: 2021-03-15
Cited: 0
Clicked: 5560
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-7486-7243
https://orcid.org/0000-0003-2457-6795
https://orcid.org/0000-0003-1471-3821
Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong. Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 527-547.
@article{title="Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems",
author="Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="527-547",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000444"
}
%0 Journal Article
%T Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems
%A Qi Zhang
%A Xusheng Xiong
%A Qiang Li
%A Tao Han
%A Yi Zhong
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 527-547
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000444
TY - JOUR
T1 - Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems
A1 - Qi Zhang
A1 - Xusheng Xiong
A1 - Qiang Li
A1 - Tao Han
A1 - Yi Zhong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 527
EP - 547
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000444
Abstract: In recent years, the conventional degrees of freedom in frequency and time have been fully used. It is difficult to further improve the performance of communication systems with such degrees of freedom. orbital angular momentum (OAM), which provides a new degree of freedom for millimeter-wave (mmWave) wireless communication systems, has been recognized as a key enabling technique for future mobile communication networks. By combining OAM beams that have theoretically infinite and mutually orthogonal states with the generalized spatial modulation (GSM) strategy, a new OAM-GSM mmWave wireless communication system is designed in this paper. A bit error rate (BER) model of the OAM-GSM system is established based on channel flip precoding. The channel capacity, energy efficiency, and BER of the proposed OAM-GSM mmWave wireless communication system are simulated. Numerical results show that, compared with traditional GSM systems, the OAM-GSM system has more complex transmission and reception mechanisms but the channel capacity and maximum achievable energy efficiency are increased by 80% and 54%, respectively, and the BER drops by 91.5%.
[1]Allen B, Tennant A, Bai Q, et al., 2014. Wireless data encoding and decoding using OAM modes. Electron Lett, 50(3):232-233.
[2]Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45(11):8185-8189.
[3]An ZC, Wang J, Wang JT, et al., 2017. Mutual information and error probability analysis on generalized spatial modulation system. IEEE Trans Commun, 65(3):1044-1060.
[4]Beth RA, 1936. Mechanical detection and measurement of the angular momentum of light. Phys Rev, 50(2):115-125.
[5]Cover TM, Thomas JA, 2006. Elements of Information Theory (2nd Ed.). Wiley-Interscience, Hoboken, USA.
[6]Edfors O, Johansson AJ, 2012. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Trans Antenn Propag, 60(2):1126-1131.
[7]Gallager RG, 1968. Information Theory and Reliable Communication. Wiley, New York, USA.
[8]Ge XH, Zi R, Xiong XS, et al., 2017. Millimeter wave communications with OAM-SM scheme for future mobile networks. IEEE J Sel Areas Commun, 35(9):2163-2177.
[9]Gibson G, Courtial J, Padgett MJ, et al., 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt Expr, 12(22):5448-5456.
[10]Goldsmith A, Jafar SA, Jindal N, et al., 2003. Capacity limits of MIMO channels. IEEE J Sel Areas Commun, 21(5):684-702.
[11]GSMR, 2011. Mobile Industry Observatory. GSMR, London, UK.
[12]Hui XN, Zheng SL, Chen YL, et al., 2015. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Sci Rep, 5:10148.
[13]Irshid MI, Salous IS, 1991. Bit error probability for coherent M-ary PSK systems. IEEE Trans Commun, 39(3):349-352.
[14]Liu P, di Renzo M, Springer A, 2016. Line-of-sight spatial modulation for indoor mmWave communication at 60 GHz. IEEE Trans Wirel Commun, 15(11):7373-7389.
[15]Mesleh R, Haas H, Ahn CW, et al., 2006. Spatial modulation: a new low complexity spectral efficiency enhancing technique. Proc 1st Int Conf on Communication and Networking in China, p.1-5.
[16]Mohammadi SM, Daldorff LKS, Forozesh K, et al., 2010. Orbital angular momentum in radio: measurement methods. Radio Sci, 45(4):RS4007.
[17]Mood AM, Graybill FA, Boes DC, 1974. Introduction to the Theory of Statistics (3rd Ed.). McGraw-Hill, New York, USA.
[18]Rappaport TS, 1996. Wireless Communications: Principles and Practice. Prentice Hall PTR, Upper Saddle River, USA.
[19]Schemmel P, Maccalli S, Pisano G, et al., 2014. Three-dimensional measurements of a millimeter wave orbital angular momentum vortex. Opt Lett, 39(3):626.
[20]Simon MK, Alouini MS, 2005. Digital Communication over Fading Channels (2nd Ed.). John Wiley & Sons, New York, USA.
[21]Stavridis A, Sinanovi S, di Renzo M, et al., 2012. An energy saving base station employing spatial modulation. Proc IEEE 17th Int Workshop on Computer Aided Modeling and Design of Communication Links and Networks, p.231-235.
[22]Tamburini F, Mari E, Sponselli A, et al., 2012. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys, 14:033001.
[23]Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701.
[24]Wang J, Yang JY, Fazal IM, et al., 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon, 6(7):488-496.
[25]Wang L, Ge XH, Zi R, et al., 2017. Capacity analysis of orbital angular momentum wireless channels. IEEE Access, 5:23069-23077.
[26]Willner AE, Wang J, Huang H, 2012. A different angle on light communications. Science, 337(6095):655-656.
[27]Xiao Y, Yang ZF, Dan LL, et al., 2014. Low-complexity signal detection for generalized spatial modulation. IEEE Commun Lett, 18(3):403-406.
[28]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5(1):4876.
[29]Yao AM, Padgett MJ, 2011. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon, 3(2):161-204.
[30]Younis A, Serafimovski N, Mesleh R, et al., 2010. Generalised spatial modulation. Conf Record of the 44th Asilomar Conf on Signals, Systems and Computers, p.1498-1502.
[31]Zhang R, Yang LL, Hanzo L, 2015. Error probability and capacity analysis of generalised pre-coding aided spatial modulation. IEEE Trans Wirel Commun, 14(1):364-375.
[32]Zhang WT, Zheng SL, Hui XN, et al., 2017. Mode division multiplexing communication using microwave orbital angular momentum: an experimental study. IEEE Trans Wirel Commun, 16(2):1308-1318.
[33]Zhang ZF, Zheng SL, Chen YL, et al., 2016. The capacity gain of orbital angular momentum based multiple-input-multiple-output system. Sci Rep, 6:25418.
[34]Zheng SL, Hui XN, Jin XF, et al., 2015a. Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity. IEEE Int Conf on Computational Electromagnetics, p.239-240.
[35]Zheng SL, Hui XN, Jin XF, et al., 2015b. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Trans Antenn Propag, 63(4):1530-1536.
Open peer comments: Debate/Discuss/Question/Opinion
<1>