Full Text:   <2901>

Summary:  <740>

CLC number: 

On-line Access: 2022-01-24

Received: 2021-07-02

Revision Accepted: 2022-04-22

Crosschecked: 2021-11-11

Cited: 0

Clicked: 3504

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fei XIAO

https://orcid.org/0000-0003-0889-1779

Huixin DONG

https://orcid.org/0000-0002-5984-9194

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.1 P.19-30

http://doi.org/10.1631/FITEE.2100321


Ultra-low-power backscatter-based software-defined radio for intelligent and simplified IoT network


Author(s):  Huixin DONG, Wei KUANG, Fei XIAO, Lihai LIU, Feng XIANG, Wei WANG, Jianhua HE

Affiliation(s):  School of Electronic Information and Communication, Huazhong University of Science and Technology, Wuhan 430074, China; more

Corresponding email(s):   huixin@hust.edu.cn, kuangwei@hust.edu.cn, feixiao@hust.edu.cn, isaacllh@hotmail.com, fengxiang@alumni.hust.edu.cn, weiwangw@hust.edu.cn, j.he@essex.ac.uk

Key Words:  Backscatter, Ultra-low-power SDR, IoT networks


Huixin DONG, Wei KUANG, Fei XIAO, Lihai LIU, Feng XIANG, Wei WANG, Jianhua HE. Ultra-low-power backscatter-based software-defined radio for intelligent and simplified IoT network[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(1): 19-30.

@article{title="Ultra-low-power backscatter-based software-defined radio for intelligent and simplified IoT network",
author="Huixin DONG, Wei KUANG, Fei XIAO, Lihai LIU, Feng XIANG, Wei WANG, Jianhua HE",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="1",
pages="19-30",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100321"
}

%0 Journal Article
%T Ultra-low-power backscatter-based software-defined radio for intelligent and simplified IoT network
%A Huixin DONG
%A Wei KUANG
%A Fei XIAO
%A Lihai LIU
%A Feng XIANG
%A Wei WANG
%A Jianhua HE
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 1
%P 19-30
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100321

TY - JOUR
T1 - Ultra-low-power backscatter-based software-defined radio for intelligent and simplified IoT network
A1 - Huixin DONG
A1 - Wei KUANG
A1 - Fei XIAO
A1 - Lihai LIU
A1 - Feng XIANG
A1 - Wei WANG
A1 - Jianhua HE
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 1
SP - 19
EP - 30
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100321


Abstract: 
The recent decade has witnessed an upsurge in the demands of intelligent and simplified Internet of Things (IoT) networks that provide ultra-low-power communication for numerous miniaturized devices. Although the research community has paid great attention to wireless protocol designs for these networks, researchers are handicapped by the lack of an energy-efficient software-defined radio (SDR) platform for fast implementation and experimental evaluation. Current SDRs perform well in battery-equipped systems, but fail to support miniaturized IoT devices with stringent hardware and power constraints. This paper takes the first step toward designing an ultra-low-power SDR that satisfies the ultra-low-power or even battery-free requirements of intelligent and simplified ioT networks. To achieve this goal, the core technique is the effective integration of μW-level backscatter in our SDR to sidestep power-hungry active radio frequency chains. We carefully develop a novel circuit design for efficient energy harvesting and power control, and devise a competent solution for eliminating the harmonic and mirror frequencies caused by backscatter hardware. We evaluate the proposed SDR using different modulation schemes, and it achieves a high data rate of 100 kb/s with power consumption less than 200 μW in the active mode and as low as 10 μW in the sleep mode. We also conduct a case study of railway inspection using our platform, achieving 1 kb/s battery-free data delivery to the monitoring unmanned aerial vehicle at a distance of 50 m in a real-world environment, and provide two case studies on smart factories and logistic distribution to explore the application of our platform.

适用于智简IoT网络的基于背向散射超低功耗软件无线电设计

董慧鑫1,匡伟1,肖菲2,刘立海3,向峰4,王巍1,何建华5
1华中科技大学电子信息与通信学院,中国武汉市,430074
2华中科技大学管理学院,中国武汉市,430074
2中铁第四勘察设计院集团有限公司,中国武汉市,430063
3武汉船舶通信研究所,中国武汉市,430079
3艾塞克斯大学计算机科学与电子工程学院,英国科尔切斯特市,CO4 3SQ
摘要:近年来,对智能和简化、为众多小型化设备提供超低功耗的通信物联网(IoT)的需求激增。尽管科研人员已开始为这些网络设计通信协议,但缺乏一个低功耗、高能效软件无线电(SDR)开发平台实现快速实施和实验评估。现有SDR平台只能在有源场景下工作良好,但不适用于硬件条件和能量高度受限的小型化IoT设备。本文率先尝试实现一种超低功耗SDR平台,可满足超低功耗甚至无源物联网节点的通信研发需求。为实现这个目标,将 µW级背向散射通信技术有效集成到SDR平台,避免使用高耗能有源射频前端器件。设计了一个包含能量收集和功率管理的新颖电路,并提出消除背向散射造成的谐波和镜像频率干扰方法。评估了不同调制方式下的SDR性能,实现了100 kb/s的高通信速率,该节点在唤醒状态能耗低于200 µW,在睡眠状态下能耗为10 µW。利用该平台进行一个铁路检查案例研究,在真实环境中且距离为50米时,实现1 kb/s的无源数据传输效率。此外,提供智能工厂和物流配送两个案例,探索所提平台的应用。

关键词:背向散射;超低功耗软件无线电;IoT网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Analog Devices, 2016. ADG904 Datasheet. https://www.analog.com

[2]Avx, 2020. Avx BestCap. http://catalogs.avx.com/BestCap.pdf

[3]Chi ZC, Liu X, Wang W, et al., 2020. Leveraging ambient LTE traffic for ubiquitous passive communication. Proc Annual Conf of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, p.172-185. doi: 10.1145/3387514.3405861

[4]Dunna M, Meng M, Wang PH, et al., 2021. SyncScatter: enabling WiFi like synchronization and range for WiFi backscatter communication. Proc 18th USENIX Symp on Networked Systems Design and Implementation, p.923-937.

[5]Ettus, 2018. USRP B200mini-i. https://www.ettus.com/all-products/usrp-b200mini-i-2/

[6]Guo XZ, Shangguan LF, He Y, et al., 2020. Aloba: rethinking ON-OFF keying modulation for ambient LoRa backscatter. Proc 18th Conf on Embedded Networked Sensor Systems, p.192-204. doi: 10.1145/3384419.3430719

[7]Hessar M, Najafi A, Iyer V, et al., 2020. TinySDR: low-power SDR platform for over-the-air programmable IoT testbeds. 17th USENIX Symp on Networked Systems Design and Implementation, p.1031-1046.

[8]Huang QY, Song GC, Wang W, et al., 2020. FreeScatter: enabling concurrent backscatter communication using antenna arrays. IEEE Int Things J, 7(8):7310-7318. doi: 10.1109/JIOT.2020.2984877

[9]Kuo YS, Pannuto P, Schmid T, et al., 2012. Reconfiguring the software radio to improve power, price, and portability. Proc 10th ACM Conf on Embedded Network Sensor Systems, p.267-280. doi: 10.1145/2426656.2426683

[10]LimeNet, 2018. LimeSDR. https://limemicro.com/products/boards/limesdr/

[11]Luo ZH, Zhang QP, Ma YF, et al., 2019. 3D backscatter localization for fine-grained robotics. Proc 16th USENIX Conf on Networked Systems Design and Implementation, p.765-781.

[12]Microsemi, 2012. AGLN250 Datasheet. https://cn.alldatasheet.com/view.jsp?Searchword=AGLN250

[13]muRata, 2018. muRata Lumped Compent. https://www.murata.com/zhcn/support/faqs/capacitor/ceramiccapacitor/char/0039

[14]Nandakumar R, Iyer V, Gollakota S, 2018. 3D localization for sub-centimeter sized devices. Proc 16th ACM Conf on Embedded Networked Sensor Systems, p.108-119. doi: 10.1145/3274783.3274851

[15]Peng Y, Shangguan LF, Hu Y, et al., 2018. PLoRa: a passive long-range data network from ambient LoRa transmissions. Proc Conf of the ACM Special Interest Group on Data Communication, p.147-160. doi: 10.1145/3230543.3230567

[16]People's Daily, 2021. Chinese Railway Operating Mileage. http://www.gov.cn/xinwen/2021-09/26/content5639361.htm [Accessed on Sept. 26, 2021].

[17]Philipose M, Smith JR, Jiang B, et al., 2005. Battery-free wireless identification and sensing. IEEE Perv Comput, 4(1):37-45. doi: 10.1109/MPRV.2005.7

[18]SiTime, 2017. SiT1576 Datasheet. https://www.sitimechina.com

[19]Talla V, Hessar M, Kellogg B, et al., 2017. LoRa backscatter: enabling the vision of ubiquitous connectivity. Proc ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, p.1-24. doi: 10.1145/3130970

[20]Talla V, Smith J, Gollakota S, 2021. Advances and open problems in backscatter networking. GetMob Mob Comput Commun, 24(4):32-38. doi: 10.1145/3457356.3457367

[21]TI, 2018a. TPL5111 Datasheet. https://www.ti.com

[22]TI, 2018b. TPS782xx LDO. https://www.mouser.com/Texas-Instruments/LDO-Voltage-Regulators/TPS78218-Series/N-1z0zls6Z5cgacZ1yxywu6

[23]Zhang P, Peng MG, Cui SG, et al., 2022. Theory and techniques for "intellicise" wireless networks. Front Inform Technol Electron Eng, 23(1):1-4. doi: 10.1631/FITEE.2210000

[24]Zhang PY, Bharadia D, Joshi K, et al., 2016. HitchHike: practical backscatter using commodity WiFi. Proc 14th ACM Conf on Embedded Network Sensor Systems CD-ROM, p.259-271. doi: 10.1145/2994551.2994565

[25]Zhang XN, Wang W, Xiao XD, et al., 2020. Peer-to-peer localization for single-antenna devices. Proc ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, p.1-25. doi: 10.1145/3411833

[26]Zhao J, Gong W, Liu JC, 2018. Spatial stream backscatter using commodity WiFi. Proc 16th Annual Int Conf on Mobile Systems, Applications, and Services, p.191-203. doi: 10.1145/3210240.3210329

[27]Zhao RJ, Wang PR, Ma YF, et al., 2020. NFC+: breaking NFC networking limits through resonance engineering. Proc Annual Conf of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, p.694-707. doi: 10.1145/3387514.3406219

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE