Full Text:   <1112>

Summary:  <199>

CLC number: 

On-line Access: 2023-05-06

Received: 2022-07-05

Revision Accepted: 2023-05-06

Crosschecked: 2022-12-04

Cited: 0

Clicked: 1068

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-hua Zhang

https://orcid.org/0000-0002-6492-3846

Zhaowei CHANG

https://orcid.org/0000-0002-8689-410X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.4 P.626-632

http://doi.org/10.1631/FITEE.2200290


Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement


Author(s):  Zhaowei CHANG, Jianhua ZHANG, Pan TANG, Lei TIAN, Li YU, Guangyi LIU, Liang XIA

Affiliation(s):  State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   changzw12345@bupt.edu.cn, jhzhang@bupt.edu.cn

Key Words: 


Share this article to: More <<< Previous Article|

Zhaowei CHANG, Jianhua ZHANG, Pan TANG, Lei TIAN, Li YU, Guangyi LIU, Liang XIA. Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(4): 626-632.

@article{title="Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement",
author="Zhaowei CHANG, Jianhua ZHANG, Pan TANG, Lei TIAN, Li YU, Guangyi LIU, Liang XIA",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="4",
pages="626-632",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200290"
}

%0 Journal Article
%T Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement
%A Zhaowei CHANG
%A Jianhua ZHANG
%A Pan TANG
%A Lei TIAN
%A Li YU
%A Guangyi LIU
%A Liang XIA
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 4
%P 626-632
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200290

TY - JOUR
T1 - Frequency–angle two-dimensional reflection coefficient modeling based on terahertz channel measurement
A1 - Zhaowei CHANG
A1 - Jianhua ZHANG
A1 - Pan TANG
A1 - Lei TIAN
A1 - Li YU
A1 - Guangyi LIU
A1 - Liang XIA
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 4
SP - 626
EP - 632
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200290


Abstract: 
Terahertz (THz) channel propagation characteristics are vital for the design, evaluation, and optimization of THz communication systems. Moreover, reflection plays a significant role in channel propagation. In this correspondence, the reflection coefficients of the THz channel are researched based on extensive measurement campaigns. First, we set up the THz channel sounder from 220 to 320 GHz at incident angles ranging from 10◦ to 80◦. Based on the measured propagation loss, the reflection coefficients of five building materials, i.e., glass, tile, board, plasterboard, and aluminum alloy are calculated separately for frequencies and incident angles. It is found that the lack of THz-relative parameters leads to an inability to successfully fit the Fresnel model of nonmetallic materials to the measurement data. Thus, we propose a frequency–angle two-dimensional reflection coefficient (FARC) model by modifying the Fresnel model with the Lorenz and Drude models. The proposed model characterizes the frequency and incident angle for reflection coefficients and shows low root-mean-square error (RMSE) with the measurement data. Generally, these results are useful for modeling THz channels.

基于太赫兹信道测量的频角二维反射系数建模

常钊玮1,张建华1,唐盼1,田磊1,于力1,刘光毅2,夏亮2
1北京邮电大学网络与交换技术国家重点实验室,中国北京市,100876
2中国移动研究院,中国北京市,100053
摘要:太赫兹信道传播特性对太赫兹通信系统的设计、评估和优化至关重要。此外,反射在信道传播中起着重要作用。本文基于大量的信道测量工作,对太赫兹通道的反射系数进行研究。首先,建立从220 GHz到320 GHz的太赫兹信道测深平台,入射角范围从10°到80°。根据实测的传播损耗,分别计算玻璃、瓷砖、木板、石膏板和铝合金五种建筑材料的频率和入射角的反射系数。研究发现,由于缺乏与太赫兹相关的参数,导致非金属材料的菲涅耳模型无法成功地拟合实测数据。因此,通过改进菲涅耳模型与洛伦兹和德鲁德模型,提出一个频角二维反射系数模型。该模型表征了反射系数的频率和入射角,与实测数据的均方根误差较小。总的来说,这些结果对于太赫兹通道的建模做出贡献。

关键词:太赫兹通信;反射系数建模;入射角;建筑材料;菲涅耳模型

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmadi-Shokouh J, Noghanian S, Keshavarz H, 2011. Reflection coefficient measurement for North American house flooring at 57–64 GHz. IEEE Antenn Wirel Propag Lett, 10:1321-1324.

[2]Alawnch I, Barowski J, Rolfes I, 2018. Extraction of relative permittivity from measured reflection coefficient of dielectric materials in the frequency range 207–247 GHz. Proc 48th European Microwave Conf, p.576-579.

[3]Chen L, Liao DG, Guo XG, et al., 2019. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front Inform Technol Electron Eng, 20(5):591-607.

[4]Eckhardt JM, Doeker T, Rey S, et al., 2019. Measurements in a real data centre at 300 GHz and recent results. Proc 13th European Conf on Antennas and Propagation, p.1-5.

[5]Kim MD, Kim KW, Kwon HK, et al., 2021. Experimental reflection characteristics of 253 GHz in a small closed-room. Proc Int Symp on Antennas and Propagation, p.689-690.

[6]Kokkoniemi J, Petrov V, Moltchanov D, et al., 2016. Wideband terahertz band reflection and diffuse scattering measurements for beyond 5G indoor wireless networks. Proc 22nd European Wireless Conf, p.1-6.

[7]Landron O, Feuerstein MJ, Rappaport TS, 1993. In situ microwave reflection coefficient measurements for smooth and rough exterior wall surfaces. Proc 43rd Vehicular Technology Conf, p.77-80.

[8]Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al., 2005. Terahertz characterisation of building materials. Electron Lett, 41(18):1002-1004.

[9]Popescu G, 2010. Nanobiophotonics. McGraw-Hill, New York, USA.

[10]Tang P, Zhang JH, Tian HY, et al., 2021. Channel measurement and path loss modeling from 220 GHz to 330 GHz for 6G wireless communications. China Commun, 18(5):19-32.

[11]Xing YC, Kanhere O, Ju SH, et al., 2019. Indoor wireless channel properties at millimeter wave and sub-terahertz frequencies. Proc IEEE Global Communications Conf, p.1-6.

[12]Zhang JH, Tang P, Tian L, et al., 2017. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inform Sci, 60(8):080301.

[13]Zhang JH, Kang K, Huang YM, et al., 2019. Millimeter and THz wave for 5G and beyond. China Commun, 16(2):iii-vi.

[14]Zhang JH, Tang P, Yu L, et al., 2020. Channel measurements and models for 6G: current status and future outlook. Front Inform Technol Electron Eng, 21(1):39-61.

[15]Zhu ZB, Hu WD, Qin T, et al., 2020. A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency. Front Inform Technol Electron Eng, 21(3):377-383.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE