Full Text:   <3044>

Summary:  <252>

Suppl. Mater.: 

CLC number: TP39

On-line Access: 2023-03-25

Received: 2022-11-05

Revision Accepted: 2023-03-25

Crosschecked: 2023-01-05

Cited: 0

Clicked: 1352

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lvhan PAN

https://orcid.org/0000-0002-8272-6096

Guodao SUN

https://orcid.org/0000-0002-8383-8153

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.3 P.355-372

http://doi.org/10.1631/FITEE.2200547


Visual interactive image clustering: a target-independent approach for configuration optimization in machine vision measurement


Author(s):  Lvhan PAN, Guodao SUN, Baofeng CHANG, Wang XIA, Qi JIANG, Jingwei TANG, Ronghua LIANG

Affiliation(s):  College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310012, China

Corresponding email(s):   lvhanpan@zjut.edu.cn, guodao@zjut.edu.cn

Key Words:  Machine vision measurement, Lighting scheme design, Parameter optimization, Visual interactive image clustering


Lvhan PAN, Guodao SUN, Baofeng CHANG, Wang XIA, Qi JIANG, Jingwei TANG, Ronghua LIANG. Visual interactive image clustering: a target-independent approach for configuration optimization in machine vision measurement[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(3): 355-372.

@article{title="Visual interactive image clustering: a target-independent approach for configuration optimization in machine vision measurement",
author="Lvhan PAN, Guodao SUN, Baofeng CHANG, Wang XIA, Qi JIANG, Jingwei TANG, Ronghua LIANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="3",
pages="355-372",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200547"
}

%0 Journal Article
%T Visual interactive image clustering: a target-independent approach for configuration optimization in machine vision measurement
%A Lvhan PAN
%A Guodao SUN
%A Baofeng CHANG
%A Wang XIA
%A Qi JIANG
%A Jingwei TANG
%A Ronghua LIANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 3
%P 355-372
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200547

TY - JOUR
T1 - Visual interactive image clustering: a target-independent approach for configuration optimization in machine vision measurement
A1 - Lvhan PAN
A1 - Guodao SUN
A1 - Baofeng CHANG
A1 - Wang XIA
A1 - Qi JIANG
A1 - Jingwei TANG
A1 - Ronghua LIANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 3
SP - 355
EP - 372
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200547


Abstract: 
machine vision measurement (MVM) is an essential approach that measures the area or length of a target efficiently and non-destructively for product quality control. The result of MVM is determined by its configuration, especially the lighting scheme design in image acquisition and the algorithmic parameter optimization in image processing. In a traditional workflow, engineers constantly adjust and verify the configuration for an acceptable result, which is time-consuming and significantly depends on expertise. To address these challenges, we propose a target-independent approach, visual interactive image clustering, which facilitates configuration optimization by grouping images into different clusters to suggest lighting schemes with common parameters. Our approach has four steps: data preparation, data sampling, data processing, and visual analysis with our visualization system. During preparation, engineers design several candidate lighting schemes to acquire images and develop an algorithm to process images. Our approach samples engineer-defined parameters for each image and obtains results by executing the algorithm. The core of data processing is the explainable measurement of the relationships among images using the algorithmic parameters. Based on the image relationships, we develop VMExplorer, a visual analytics system that assists engineers in grouping images into clusters and exploring parameters. Finally, engineers can determine an appropriate lighting scheme with robust parameter combinations. To demonstrate the effectiveness and usability of our approach, we conduct a case study with engineers and obtain feedback from expert interviews.

可视交互式图像聚类:一种机器视觉测量中目标无关的配置优化方法

潘律翰,孙国道,常宝峰,夏旺,江棨,汤井威,梁荣华
浙江工业大学计算机学院,中国杭州市,310012
摘要:机器视觉测量(machine vision measurement, MVM)是一种用于产品质量控制的重要方法,可有效、无损地测量目标面积或长度。MVM的结果取决于其配置,尤其是图像采集的打光方案设计和图像处理的算法参数优化。在传统工作流中,工程师不断调整和验证配置以获得可接受结果,这非常耗时且严重依赖专业知识。为解决这些挑战,提出一种目标无关方法,可视交互式图像聚类,该方法通过图像聚类推荐具有共同算法参数的打光方案促进配置优化。该方法有4个步骤:数据准备、数据采样、数据处理和可视分析。在准备阶段,工程师设计几种候选打光方案获取图像,并开发算法处理图像。对每张图像,该方法按照工程师定义的参数采样,并执行算法获得结果。数据处理的核心是使用算法参数对图像之间关系进行可解释度量。基于图像关系,开发了一个视觉分析系统,VMExplorer,帮助工程师图像聚类并探索参数。最后,工程师可确定合适的打光方案和鲁棒的参数组合。为证明该方法有效性和可用性,我们与工程师进行案例研究,并从专家访谈中获得反馈。

关键词:机器视觉测量;打光方案设计;参数优化;可视交互式图像聚类

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Afzal S, Maciejewski R, Ebert DS, 2011. Visual analytics decision support environment for epidemic modeling and response evaluation. IEEE Conf on Visual Analytics Science and Technology, p.191-200.

[2]Albers A, Gladysz B, Pinner T, et al., 2016. Procedure for defining the system of objectives in the initial phase of an Industry 4.0 project focusing on intelligent quality control systems. Proc CIRP, 52:262-267.

[3]Alonso V, Dacal-Nieto A, Barreto L, et al., 2019. Industry 4.0 implications in machine vision metrology: an overview. Proc Manuf, 41:359-366.

[4]Alsallakh B, Ren L, 2017. PowerSet: a comprehensive visualization of set intersections. IEEE Trans Visual Comput Graph, 23(1):361-370.

[5]Alsallakh B, Micallef L, Aigner W, et al., 2016. The state-of-the-art of set visualization. Comput Graph Forum, 35(1):234-260.

[6]Baron ME, 1969. A note on the historical development of logic diagrams: Leibniz, Euler and Venn. Math Gaz, 53(384):113-125.

[7]Bergner S, Sedlmair M, Moller T, et al., 2013. ParaGlide: interactive parameter space partitioning for computer simulations. IEEE Trans Visual Comput Graph, 19(9):1499-1512.

[8]Bruckner S, Möller T, 2010. Result-driven exploration of simulation parameter spaces for visual effects design. IEEE Trans Visual Comput Graph, 16(6):1468-1476.

[9]Coffey D, Lin CL, Erdman AG, et al., 2013. Design by dragging: an interface for creative forward and inverse design with simulation ensembles. IEEE Trans Visual Comput Graph, 19(12):2783-2791.

[10]Comer ML, Delp EJIII, 1999. Morphological operations for color image processing. J Electron Imag, 8(3):279-289.

[11]Eades P, 1984. A heuristic for graph drawing. Congre Numer, 42:149-160.

[12]Gleicher M, 2018. Considerations for visualizing comparison. IEEE Trans Visual Comput Graph, 24(1):413-423.

[13]Godina R, Matias JCO, 2019. Quality control in the context of Industry 4.0. Int Joint Conf on Industrial Engineering and Operations Management, p.177-187.

[14]Golnabi H, Asadpour A, 2007. Design and application of industrial machine vision systems. Robot Comput-Integr Manuf, 23(6):630-637.

[15]Kopparapu SK, 2006. Lighting design for machine vision application. Image Vis Comput, 24(7):720-726.

[16]Lex A, Gehlenborg N, Strobelt H, et al., 2014. UpSet: visualization of intersecting sets. IEEE Trans Visual Comput Graph, 20(12):1983-1992.

[17]Luk F, Huynh V, North W, 1989. Measurement of surface roughness by a machine vision system. J Phys E Sci Instrum, 22(12):977-980.

[18]Martin D, 2007. A Practical Guide to Machine Vision Lighting. Advanced Illumination, Vermont, USA, p.1-21.

[19]Munzner T, 2014. Visualization Analysis and Design. CRC Press, New York, USA.

[20]Ngo NV, Hsu QC, Hsiao WL, et al., 2017. Development of a simple three-dimensional machine-vision measurement system for in-process mechanical parts. Adv Mech Eng, 9(10):1-11.

[21]Pretorius AJ, Bray MA, Carpenter AE, et al., 2011. Visualization of parameter space for image analysis. IEEE Trans Visual Comput Graph, 17(12):2402-2411.

[22]Pretorius AJ, Zhou Y, Ruddle R, 2015. Visual parameter optimisation for biomedical image processing. BMC Bioinform, 16(S11):S9.

[23]Sadana R, Major T, Dove A, et al., 2014. OnSet: a visualization technique for large-scale binary set data. IEEE Trans Visual Comput Graph, 20(12):1993-2002.

[24]Sahoo PK, Soltani S, Wong AKC, 1988. A survey of thresholding techniques. Comput Vis Graph Image Process, 41(2):233-260.

[25]Sedlmair M, Heinzl C, Bruckner S, et al., 2014. Visual parameter space analysis: a conceptual framework. IEEE Trans Visual Comput Graph, 20(12):2161-2170.

[26]Torsney-Weir T, Saad A, Moller T, et al., 2011. Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans Visual Comput Graph, 17(12):1892-1901.

[27]Wang WC, Guan FN, Ma SY, et al., 2015. Measurement system of gear parameters based on machine vision. Meas Contr, 48(8):242-248.

[28]Weng L, Preneel B, 2011. A secure perceptual hash algorithm for image content authentication. IFIP Int Conf on Communications and Multimedia Security, p.108-121.

[29]Wu KL, Yang MS, 2007. Mean shift-based clustering. Patt Recogn, 40(11):3035-3052.

[30]Xia JZ, Ye FJ, Chen W, et al., 2018. LDSScanner: exploratory analysis of low-dimensional structures in high-dimensional datasets. IEEE Trans Visual Comput Graph, 24(1):236-245.

[31]Xia JZ, Chen TX, Zhang L, et al., 2020. SMAP: a joint dimensionality reduction scheme for secure multi-party visualization. IEEE Conf on Visual Analytics Science and Technology, p.107-118.

[32]Xia JZ, Zhang YC, Song J, et al., 2022. Revisiting dimensionality reduction techniques for visual cluster analysis: an empirical study. IEEE Trans Visual Comput Graph, 28(1):529-539.

[33]Xia JZ, Huang LQ, Lin WX, et al., 2023. Interactive visual cluster analysis by contrastive dimensionality reduction. IEEE Trans Visual Comput Graph, 29(1):734-744.

[34]Yalcin MA, Elmqvist N, Bederson BB, 2016. AggreSet: rich and scalable set exploration using visualizations of element aggregations. IEEE Trans Visual Comput Graph, 22(1):688-697.

[35]Yuan J, Chen CJ, Yang WK, et al., 2021. A survey of visual analytics techniques for machine learning. Comput Visual Med, 7(1):3-36.

[36]Yuan QM, Zhang H, 2022. Research on the characteristics of light sources in machine vision. Acad J Sci Technol, 3(1):1-6.

[37]Zhu ZH, Shen Y, Zhu SJ, et al., 2022. Towards better pattern enhancement in temporal evolving set visualization. J Vis, early access.

[38]Zorcolo A, Escobar-Palafox G, Gault R, et al., 2011. Study of lighting solutions in machine vision applications for automated assembly operations. IOP Conf Ser Mater Sci Eng, 26(1):012019.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE