Full Text:   <428>

Summary:  <162>

CLC number: TP13

On-line Access: 2024-02-23

Received: 2023-09-09

Revision Accepted: 2024-02-23

Crosschecked: 2023-12-10

Cited: 0

Clicked: 598

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yanping YANG

https://orcid.org/0000-0001-6900-7241

Dawei LI

https://orcid.org/0000-0002-9702-8848

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.2 P.197-213

http://doi.org/10.1631/FITEE.2300615


Modified dynamic event-triggered scaled formation control formulti-agent systems via a sparrowsearch algorithm based co-design algorithm


Author(s):  Yanping YANG, Siyu MA, Dawei LI, Jinghui SUO

Affiliation(s):  College of Information Science and Technology, Donghua University, Shanghai 201620, China; more

Corresponding email(s):   yangyanping@dhu.edu.cn, smithereens_msy@163.com, ldwei1986@163.com, suojinghui@dhu.edu.cn

Key Words:  Scaled consensus, Formation control, Dynamic event-triggered scheme, Switching topology


Yanping YANG, Siyu MA, Dawei LI, Jinghui SUO. Modified dynamic event-triggered scaled formation control formulti-agent systems via a sparrowsearch algorithm based co-design algorithm[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(2): 197-213.

@article{title="Modified dynamic event-triggered scaled formation control formulti-agent systems via a sparrowsearch algorithm based co-design algorithm",
author="Yanping YANG, Siyu MA, Dawei LI, Jinghui SUO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="2",
pages="197-213",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300615"
}

%0 Journal Article
%T Modified dynamic event-triggered scaled formation control formulti-agent systems via a sparrowsearch algorithm based co-design algorithm
%A Yanping YANG
%A Siyu MA
%A Dawei LI
%A Jinghui SUO
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 2
%P 197-213
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300615

TY - JOUR
T1 - Modified dynamic event-triggered scaled formation control formulti-agent systems via a sparrowsearch algorithm based co-design algorithm
A1 - Yanping YANG
A1 - Siyu MA
A1 - Dawei LI
A1 - Jinghui SUO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 2
SP - 197
EP - 213
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300615


Abstract: 
This paper is concerned with the scaled formation control problem for multi-agent systems (MASs) over fixed and switching topologies. First, a modified resilient dynamic event-triggered (DET) mechanism involving an auxiliary dynamic variable (ADV) based on sampled data is proposed. In the proposed DET mechanism, a random variable obeying the Bernoulli distribution is introduced to express the idle and busy situations of communication networks. Meanwhile, the operation of absolute value is introduced into the triggering condition to effectively reduce the formation error. Second, a scaled formation control protocol with the proposed resilient DET mechanism is designed over fixed and switching topologies. The scaled formation error system is modeled as a time-varying delay system. Then, several sufficient stability criteria are derived by constructing appropriate Lyapunov–Krasovskii functionals (LKFs). A co-design algorithm based on the sparrow search algorithm (SSA) is presented to design the control gains and triggering parameters jointly. Finally, numerical simulations of multiple unmanned aerial vehicles (UAVs) are presented to validate the designed control method.

改进动态事件触发下基于麻雀搜索联合设计算法的多智能体缩放编队控制

杨艳萍1,2,马思羽1,2,李大威1,2,3,索婧慧1,2
1东华大学信息科学与技术学院,中国上海市,201620
2东华大学数字化纺织服装技术教育部工程研究中心,中国上海市,201620
3东华大学信息科学与技术学院纤维材料改性国家重点实验室,中国上海市,201620
摘要:本文考虑固定和切换拓扑下的多智能体系统缩放编队控制问题。首先,提出一种改进的基于采样的包含动态辅助变量的弹性动态事件触发机制。在该机制中,引入一个服从伯努利分布的随机变量来表达通信网络的空闲和繁忙情况。同时,将绝对值运算引入触发条件,以有效减小编队误差。然后,基于所提机制,在固定和切换拓扑下设计一个缩放编队控制协议。缩放编队误差系统被建模为一个时变时滞系统。通过构建适当的Lyapunov-Krasovskii泛函,导出编队误差系统稳定的充分条件。提出一种基于麻雀搜索算法的联合设计算法,用于联合设计控制增益和触发参数。最后,通过多无人机仿真实验平台,对所设计控制方法的有效性进行了数值验证。

关键词:缩放一致性;编队控制;动态事件触发机制;切换拓扑

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cao YC, Yu WW, Ren W, et al., 2013. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans Ind Inform, 9(1):427-438.

[2]Chen WB, Chen YY, Zhang Y, 2022. Finite-time coordinated path-following control of leader-following multiagent systems. Front Inform Technol Electron Eng, 23(10):1511-1521.

[3]Dong XW, Zhou Y, Ren Z, et al., 2017. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans Ind Electron, 64(6):5014-5024.

[4]Du SL, Liu T, Ho DWC, 2020. Dynamic event-triggered control for leader-following consensus of multiagent systems. IEEE Trans Syst Man Cybern Syst, 50(9):3243-3251.

[5]Ge XH, Han QL, Zhang XM, 2018. Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans Ind Electron, 65(4):3417-3426.

[6]Ge XH, Han QL, Zhong MY, et al., 2019. Distributed Krein space-based attack detection over sensor networks under deception attacks. Automatica, 109:108557.

[7]Ge XH, Xiao SY, Han QL, et al., 2022. Dynamic eventtriggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks. IEEE/CAA J Autom Sin, 9(1):31-46.

[8]Ge XH, Han QL, Wu Q, et al., 2023. Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks. IEEE/CAA J Autom Sin, 10(5):1234-1251.

[9]Guan YP, Ge XH, 2018. Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks. IEEE Trans Signal Inform Process Netw, 4(1):48-59.

[10]Guo XG, Liu PM, Wang JL, et al., 2021. Event-triggered adaptive fault-tolerant pinning control for cluster consensus of heterogeneous nonlinear multi-agent systems under aperiodic DoS attacks. IEEE Trans Netw Sci Eng, 8(2):1941-1956.

[11]He WL, Mo ZK, 2022. Secure event-triggered consensus control of linear multiagent systems subject to sequential scaling attacks. IEEE Trans Cybern, 52(10):10314-10327.

[12]He WL, Xu B, Han QL, et al., 2020. Adaptive consensus control of linear multiagent systems with dynamic eventtriggered strategies. IEEE Trans Cybern, 50(7):2996-3008.

[13]He WL, Xu WY, Ge XH, et al., 2022. Secure control of multiagent systems against malicious attacks: a brief survey. IEEE Trans Ind Inform, 18(6):3595-3608.

[14]Hu JP, Wu YZ, Li T, et al., 2019. Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans Autom Contr, 64(5):2122-2127.

[15]Huang J, Wen GG, Peng ZX, et al., 2020. Cluster-delay consensus for second-order nonlinear multi-agent systems. J Syst Sci Compl, 33(2):333-344.

[16]Ju YM, Ding DR, He X, et al., 2022. Consensus control of multi-agent systems using fault-estimation-in-the-loop: dynamic event-triggered case. IEEE/CAA J Autom Sin, 9(8):1440-1451.

[17]Lin ZY, Wang LL, Han ZM, et al., 2014. Distributed formation control of multi-agent systems using complex Laplacian. IEEE Trans Autom Contr, 59(7):1765-1777.

[18]Luo SP, Ye D, 2022. Cluster consensus control of linear multiagent systems under directed topology with general partition. IEEE Trans Autom Contr, 67(4):1929-1936.

[19]Ma L, Wang YL, Han QL, 2021. H cluster formation control of networked multiagent systems with stochastic sampling. IEEE Trans Cybern, 51(12):5761-5772.

[20]Mahony R, Kumar V, Corke P, 2012. Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Autom Mag, 19(3):20-32.

[21]Meng DY, Jia YM, 2016. Scaled consensus problems on switching networks. IEEE Trans Autom Contr, 61(6):1664-1669.

[22]Ning BD, Han QL, Zuo ZY, et al., 2023. Fixed-time and prescribed-time consensus control of multiagent systems and its applications: a survey of recent trends and methodologies. IEEE Trans Ind Inform, 19(2):1121-1135.

[23]Park P, Ko JW, Jeong C, 2011. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1):235-238.

[24]Ren W, Atkins E, 2005. Second-order consensus protocols in multiple vehicle systems with local interactions. Proc AIAA Guidance, Navigation, and Control Conf and Exhibit.

[25]Roy S, 2015. Scaled consensus. Automatica, 51:259-262.

[26]Shan YH, Hu JF, Chan KW, et al., 2021. A unified model predictive voltage and current control for microgrids with distributed fuzzy cooperative secondary control. IEEE Trans Ind Inform, 17(12):8024-8034.

[27]Shen B, Wang ZD, Wang D, et al., 2020. Distributed statesaturated recursive filtering over sensor networks under round-robin protocol. IEEE Trans Cybern, 50(8):3605-3615.

[28]Su YF, Cai H, Huang J, 2022. The cooperative output regulation by the distributed observer approach. Int J Netw Dynam Intell, 1(1):20-35.

[29]Wang H, Yu WW, Wen GH, et al., 2019. Fixed-time consensus of nonlinear multi-agent systems with general directed topologies. IEEE Trans Circ Syst II Expr Briefs, 66(9):1587-1591.

[30]Wang JH, Bao F, Han L, et al., 2020. Discrete sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader. Proc Chinese Automation Congress, p.4950-4955.

[31]Wang XL, Sun Y, Ding DR, 2022. Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques. Int J Netw Dynam Intell, 1(1):85-98.

[32]Xie ML, Ding DR, Ge XH, et al., 2023. Distributed platooning control of automated vehicles subject to replay attacks based on proportional integral observers. IEEE/CAA J Autom Sin, early access.

[33]Xu B, He WL, 2018. Event-triggered cluster consensus of leader-following linear multi-agent systems. J Artif Intell Soft Comput Res, 8(4):293-302.

[34]Xue JK, Shen B, 2020. A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Contr Eng, 8(1):22-34.

[35]Ye MJ, Han QL, Ding L, et al., 2023. Distributed Nash equilibrium seeking in games with partial decision information: a survey. Proc IEEE, 111(2):140-157.

[36]Ye N, Zhang YB, Borror CM, 2004. Robustness of the Markov-chain model for cyber-attack detection. IEEE Trans Rel, 53(1):116-123.

[37]Yu JJ, Zhang KJ, Fei SM, 2009. Further results on mean square exponential stability of uncertain stochastic delayed neural networks. Commun Nonl Sci Numer Simul, 14(4):1582-1589.

[38]Yu JL, Dong XW, Li QD, et al., 2022. Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems. IEEE Trans Circ Syst I Reg Papers, 69(6):2567-2578.

[39]Zhang D, Xu ZH, Karimi HR, et al., 2018. Distributed H output-feedback control for consensus of heterogeneous linear multiagent systems with aperiodic sampled-data communications. IEEE Trans Ind Electron, 65(5):4145-4155.

[40]Zhang LZ, Li YY, Lou JG, et al., 2022. Bipartite asynchronous impulsive tracking consensus for multiagent systems. Front Inform Technol Electron Eng, 23(10):1522-1532.

[41]Zhang XM, Han QL, Ge XH, et al., 2023. Sampled-data control systems with non-uniform sampling: a survey of methods and trends. Ann Rev Contr, 55:70-91.

[42]Zhu GL, Liu KX, Gu HB, et al., 2022. Observer-based eventtriggered formation control of multi-agent systems with switching directed topologies. IEEE Trans Circ Syst I Reg Papers, 69(3):1323-1332.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE