Full Text:   <311>

Summary:  <43>

CLC number: TP273

On-line Access: 2024-08-30

Received: 2023-09-15

Revision Accepted: 2024-08-30

Crosschecked: 2024-01-18

Cited: 0

Clicked: 451

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Huimin WEI

https://orcid.org/0009-0008-9639-9365

Chen PENG

https://orcid.org/0000-0003-3652-2233

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.8 P.1123-1133

http://doi.org/10.1631/FITEE.2300627


Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems


Author(s):  Huimin WEI, Chen PENG, Min ZHAO

Affiliation(s):  School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; more

Corresponding email(s):   weihuimin16@163.com, c.peng@shu.edu.cn

Key Words:  Heterogeneous multi-agent systems, Formation control, Cross-dimensional event-triggered mechanism


Huimin WEI, Chen PENG, Min ZHAO. Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(8): 1123-1133.

@article{title="Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems",
author="Huimin WEI, Chen PENG, Min ZHAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="8",
pages="1123-1133",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300627"
}

%0 Journal Article
%T Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
%A Huimin WEI
%A Chen PENG
%A Min ZHAO
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 8
%P 1123-1133
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300627

TY - JOUR
T1 - Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
A1 - Huimin WEI
A1 - Chen PENG
A1 - Min ZHAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 8
SP - 1123
EP - 1133
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300627


Abstract: 
This paper concerns the event-triggered distributed cross-dimensional formation control problem of heterogeneous multi-agent systems (HMASs) subject to limited network resources. The central aim is to design an effective distributed formation control scheme that will achieve the desired formation control objectives even in the presence of restricted communication. Consequently, a multi-dimensional HMAS is first developed, where a group of agents are assigned to several subgroups based on their dimensions. Then, to mitigate the excessive consumption of communication resources, a cross-dimensional event-triggered communication mechanism is designed to reduce the information interaction among agents with different dimensions. Under the proposed event-based communication mechanism, the problem of HMAS cross-dimensional formation control is transformed into the asymptotic stability problem of a closed-loop error system. Furthermore, several stability criteria for designing a cross-dimensional formation control protocol and communication schedule are presented in an environment where there is no information interaction among follower agents. Finally, a simulation case study is provided to validate the effectiveness of the proposed formation control protocol.

异构多智能体系统的事件触发分布式跨维度编队控制

魏惠敏1,彭晨1,赵敏2
1上海大学机电工程与自动化学院,中国上海市,200444
2南通大学数学与统计学院,中国南通市,226019
摘要:本文研究受有限资源限制异构多智能体系统的事件触发分布式跨维度编队控制问题。中心任务是设计一个有效编队控制方案,即使在通讯受限情况下也能实现预期编队控制目标。因此,首先建立一个多维异构多智能体系统,根据智能体维度对它们进行分组。其次,为减少通信资源的过度消耗,设计一种跨维度事件触发通信方案,减少智能体之间信息交流。在设计的通信机制下,将异构多智能体编队控制问题转化为闭环误差系统渐近稳定性问题。然后,在不同维数追随者之间无通信条件下,给出设计跨维度编队控制和通信协议的准则。最后,通过一个仿真实例验证所设计编队控制协议的有效性。

关键词:异构多智能体系统;编队控制;跨维度事件触发机制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ding L, Zheng WX, 2017. Network-based practical consensus of heterogeneous nonlinear multiagent systems. IEEE Trans Cybern, 47(8):1841-1851.

[2]Dong XW, Yu BC, Shi ZY, et al., 2015. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans Contr Syst Technol, 23(1):340-348.

[3]Dou LY, Song C, Wang XF, et al., 2020. Target localization and enclosing control for networked mobile agents with bearing measurements. Automatica, 118:109022.

[4]Ge XH, Han QL, 2015. Distributed event-triggered H filtering over sensor networks with communication delays. Inform Sci, 291:128-142.

[5]Ge XH, Han QL, 2017. Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans Ind Electron, 64(10):8118-8127.

[6]Ge XH, Xiao SY, Han QL, et al., 2022. Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks. IEEE/CAA J Autom Sin, 9(1):31-46.

[7]Ge XH, Han QL, Wu Q, et al., 2023. Resilient and safe platooning control of connected automated vehicles against intermittent denial-of-service attacks. IEEE/CAA J Autom Sin, 10(5):1234-1251.

[8]Ge XH, Han QL, Zhang XM, et al., 2024. Communication resource-efficient vehicle platooning control with various spacing policies. IEEE/CAA J Autom Sin, 11(2):362-376.

[9]Haghshenas H, Badamchizadeh MA, Baradarannia M, 2015. Containment control of heterogeneous linear multi-agent systems. Automatica, 54:210-216.

[10]Hu WF, Liu L, Feng G, 2017. Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy. IEEE Trans Cybern, 47(8):1914-1924.

[11]Jiang W, Wen GG, Peng ZX, et al., 2019. Fully distributed formation-containment control of heterogeneous linear multiagent systems. IEEE Trans Automat Contr, 64(9):3889-3896.

[12]Jiao Q, Modares H, Lewis FL, et al., 2016. Distributed L2-gain output-feedback control of homogeneous and heterogeneous systems. Automatica, 71:361-368.

[13]Ju YM, Ding DR, He X, et al., 2022. Consensus control of multi-agent systems using fault-estimation-in-the-loop: dynamic event-triggered case. IEEE/CAA J Autom Sin, 9(8):1440-1451.

[14]Li SB, Feng G, Luo XY, et al., 2015. Output consensus of heterogeneous linear discrete-time multiagent systems with structural uncertainties. IEEE Trans Cybern, 45(12):2868-2879.

[15]Ma L, Wang YL, Fei MR, et al., 2022. Cross-dimensional formation control of second-order heterogeneous multi-agent systems. ISA Trans, 127:188-196.

[16]Meng ZY, Yang T, Dimarogonas DV, et al., 2015. Coordinated output regulation of heterogeneous linear systems under switching topologies. Automatica, 53:362-368.

[17]Ning BD, Han QL, Zuo ZY, et al., 2023. Fixed-time and prescribed-time consensus control of multiagent systems and its applications: a survey of recent trends and methodologies. IEEE Trans Ind Inform, 19(2):1121-1135.

[18]Oh KK, Park MC, Ahn HS, 2015. A survey of multi-agent formation control. Automatica, 53:424-440.

[19]Park P, Ko JW, Jeong C, 2011. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1):235-238.

[20]Rezaee H, Abdollahi F, 2015. Pursuit formation of double-integrator dynamics using consensus control approach. IEEE Trans Ind Electron, 62(7):4249-4256.

[21]Song WZ, Feng J, Zhang HG, et al., 2022. Event-based formation control of heterogeneous multiagent systems with leader agent of nonzero input. Inform Sci, 598:157-181.

[22]Song WZ, Feng J, Zhang HG, et al., 2023. Dynamic event-triggered formation control for heterogeneous multi- agent systems with nonautonomous leader agent. IEEE Trans Neur Netw Learn Syst, 34(12):9685-9699.

[23]Weimerskirch H, Martin J, Clerquin Y, et al., 2001. Energy saving in flight formation. Nature, 413(6857):697-698.

[24]Xia LN, Li Q, Song RZ, et al., 2023. Dynamic event-triggered leader-follower control for multiagent systems subject to input time delay. IEEE Trans Syst Man Cybern Syst, 53(3):1970-1981.

[25]Xie ML, Ding DR, Ge XH, et al., 2024. Distributed platooning control of automated vehicles subject to replay attacks based on proportional integral observers. IEEE/CAA J Autom Sin, 11(9):1954-1966.

[26]Yang Y, Xiao Y, Li TS, 2022. Attacks on formation control for multiagent systems. IEEE Trans Cybern, 52(12):12805-12817.

[27]Yang YP, Li SR, Ge XH, et al., 2024. Event-triggered cluster consensus of multi-agent systems via a modified genetic algorithm. IEEE Trans Neur Netw Learn Syst, 35(5):6792-6805.

[28]Zhang D, Xu ZH, Karimi HR, et al., 2018. Distributed H output-feedback control for consensus of heterogeneous linear multiagent systems with aperiodic sampled-data communications. IEEE Trans Ind Electron, 65(5):4145-4155.

[29]Zhang XM, Han QL, Ge XH, et al., 2023. Sampled-data control systems with non-uniform sampling: a survey of methods and trends. Annu Rev Contr, 55:70-91.

[30]Zhao M, Peng C, He WL, et al., 2018. Event-triggered communication for leader-following consensus of second-order multiagent systems. IEEE Trans Cybern, 48(6):1888-1897.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE