Full Text:   <475>

Summary:  <512>

CLC number: TP13

On-line Access: 2021-01-11

Received: 2020-04-19

Revision Accepted: 2020-08-11

Crosschecked: 2020-09-28

Cited: 0

Clicked: 1646

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhengquan Yang

https://orcid.org/0000-0003-0406-6640

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.1 P.134-140

http://doi.org/10.1631/FITEE.2000177


Finite-time formation control for first-order multi-agent systems with region constraints


Author(s):  Zhengquan Yang, Xiaofang Pan, Qing Zhang, Zengqiang Chen

Affiliation(s):  College of Science, Civil Aviation University of China, Tianjin 300300, China; more

Corresponding email(s):   zquanyang@163.com, 1219006322@qq.com, qz120168@hotmail.com, chenzq@nankai.edu.cn

Key Words:  Finite-time formation, Multi-agent system, Asymptotic convergence, Set constraint, Lyapunov theorem


Share this article to: More <<< Previous Article|

Zhengquan Yang, Xiaofang Pan, Qing Zhang, Zengqiang Chen. Finite-time formation control for first-order multi-agent systems with region constraints[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(1): 134-140.

@article{title="Finite-time formation control for first-order multi-agent systems with region constraints",
author="Zhengquan Yang, Xiaofang Pan, Qing Zhang, Zengqiang Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="1",
pages="134-140",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000177"
}

%0 Journal Article
%T Finite-time formation control for first-order multi-agent systems with region constraints
%A Zhengquan Yang
%A Xiaofang Pan
%A Qing Zhang
%A Zengqiang Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 1
%P 134-140
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000177

TY - JOUR
T1 - Finite-time formation control for first-order multi-agent systems with region constraints
A1 - Zhengquan Yang
A1 - Xiaofang Pan
A1 - Qing Zhang
A1 - Zengqiang Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 1
SP - 134
EP - 140
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000177


Abstract: 
In this study, the finite-time formation control of multi-agent systems with region constraints is studied. Multiple agents have first-order dynamics and a common target area. A novel control algorithm is proposed using local information and interaction. If the communication graph is undirected and connected and the desired framework is rigid, it is proved that the controller can be used to solve the formation problem with a target area. That is, all agents can enter the desired region in finite time while reaching and maintaining the desired formation shapes. Finally, a numerical example is given to illustrate the results.

具有区域约束的一阶多智能体系统的有限时间编队控制


杨正全1,潘小芳1,张青1,陈增强2
1中国民航大学理学院,中国天津市,300300
2南开大学人工智能学院,中国天津市,300350

摘要:研究具有区域约束的多智能体系统的有限时间编队控制问题。多智能体具有一阶动力学和一个共同目标区域。提出一种利用局部信息和交互作用的控制算法。如果通信图是无向连通的以及所设计框架是刚性的,证明该控制器可用于解决具有目标区域的编队问题。该控制算法可控制所有智能体在有限时间内进入所需区域,同时达到并保持所需队形。最后,给出一个数值例子说明算法的有效性。

关键词:有限时间编队;多智能体系统;渐进收敛;约束集;李雅普诺夫定理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Asimow L, Roth B, 1979. The rigidity of graphs, II. J Math Anal Appl, 68(1):171-190.

[2]Basiri M, Bishop AN, Jensfelt P, 2010. Distributed control of triangular formations with angle-only constraints. Syst Contr Lett, 59(2):147-154.

[3]Bhat SP, Bernstein DS, 2000. Finite-time stability of continuous autonomous systems. SIAM J Contr Optim, 38(3):751-766.

[4]Dong XW, Hu GQ, 2016. Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica, 73:47-55.

[5]Dong XW, Xi JX, Lu G, et al., 2014. Formation control for high-order linear time-invariant multiagent systems with time delays. IEEE Trans Contr Netw Syst, 1(3):232-240.

[6]Egerstedt M, Hu XM, 2001. Formation constrained multi-agent control. IEEE Trans Rob Autom, 17(6):947-951.

[7]Erdös P, Rényi A, 1959. On random graphs I. Publ Math, 6:290-297.

[8]Facchinei F, Pang JS, 2003. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer-Verlag, New York, USA, p.751-766.

[9]Fax JA, Murray RM, 2004. Information flow and cooperative control of vehicle formations. IEEE Trans Autom Contr, 49(9):1465-1476.

[10]Ge SS, Liu XM, Goh CH, et al., 2016. Formation tracking control of multiagents in constrained space. IEEE Trans Contr Syst Technol, 24(3):992-1003.

[11]Hong YG, Wang JK, Cheng DZ, 2006. Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans Autom Contr, 51(5):858-862.

[12]Lafferriere G, Williams A, Caughman J, et al., 2005. Decentralized control of vehicle formations. Syst Contr Lett, 54(9):899-910.

[13]Li WX, Chen ZQ, Liu ZX, 2013. Leader-following formation control for second-order multiagent systems with time-varying delay and nonlinear dynamics. Nonl Dynam, 72(4):803-812.

[14]Oh KK, Ahn HS, 2013. Formation control of mobile agents based on distributed position estimation. IEEE Trans Autom Contr, 58(3):737-742.

[15]Oh KK, Park MC, Ahn HS, 2015. A survey of multi-agent formation control. Automatica, 53:424-440.

[16]Porfiri M, Roberson DG, Stilwell DJ, 2007. Tracking and formation control of multiple autonomous agents: a two-level consensus approach. Automatica, 43(8):1318-1328.

[17]Rezaee H, Abdollahi F, 2015. Pursuit formation of double-integrator dynamics using consensus control approach. IEEE Trans Ind Electron, 62(7):4249-4256.

[18]Sun Z, Mou S, Deghat M, et al., 2014. Finite time distance-based rigid formation stabilization and flocking. IFAC Proc Vol, 47(3):9183-9189.

[19]Xia YQ, Na XT, Sun ZQ, et al., 2016. Formation control and collision avoidance for multi-agent systems based on position estimation. ISA Trans, 61(9):287-296.

[20]Xiao F, Wang L, Chen J, et al., 2009. Finite-time formation control for multi-agent systems. Automatica, 45(11):2605-2611.

[21]Xie GM, Wang L, 2009. Moving formation convergence of a group of mobile robots via decentralised information feedback. Int J Syst Sci, 40(10):1019-1027.

[22]Yang ZQ, Zhang Q, Chen ZQ, 2019. Formation control of multi-agent systems with region constraint. Complexity, 2019:8481060.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE