Full Text:   <4170>

Summary:  <2161>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-06-20

Cited: 0

Clicked: 8112

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xu Zhu

http://orcid.org/0000-0002-3616-4336

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.7 P.968-977

http://doi.org/10.1631/FITEE.1600004


Consensus-based three-dimensional multi-UAV formation control strategy with high precision


Author(s):  Mao-de Yan, Xu Zhu, Xun-xun Zhang, Yao-hong Qu

Affiliation(s):  School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, China; more

Corresponding email(s):   mdyan@chd.edu.cn, zhuxu_1987@sina.com, zhangxunxun0427@163.com, qyh0809@nwpu.edu.cn

Key Words:  Multiple unmanned aerial vehicles, Consensus, Cooperative guidance, Cooperative control, Synchronization technology


Mao-de Yan, Xu Zhu, Xun-xun Zhang, Yao-hong Qu. Consensus-based three-dimensional multi-UAV formation control strategy with high precision[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 968-977.

@article{title="Consensus-based three-dimensional multi-UAV formation control strategy with high precision",
author="Mao-de Yan, Xu Zhu, Xun-xun Zhang, Yao-hong Qu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="7",
pages="968-977",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1600004"
}

%0 Journal Article
%T Consensus-based three-dimensional multi-UAV formation control strategy with high precision
%A Mao-de Yan
%A Xu Zhu
%A Xun-xun Zhang
%A Yao-hong Qu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 7
%P 968-977
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1600004

TY - JOUR
T1 - Consensus-based three-dimensional multi-UAV formation control strategy with high precision
A1 - Mao-de Yan
A1 - Xu Zhu
A1 - Xun-xun Zhang
A1 - Yao-hong Qu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 7
SP - 968
EP - 977
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1600004


Abstract: 
We propose a formation control strategy for multiple unmanned aerial vehicles (multi-UAV) based on second-order consensus, by introducing position and velocity coordination variables through neighbor-to-neighbor interaction to generate steering commands. A cooperative guidance algorithm and a cooperative control algorithm are proposed together to maintain a specified geometric configuration, managing the position and attitude respectively. With the whole system composed of the six-degree-of-freedom UAV model, the cooperative guidance algorithm, and the cooperative control algorithm, the formation control strategy is a closed-loop one and with full states. The cooperative guidance law is a second-order consensus algorithm, providing the desired acceleration, pitch rate, and heading rate. Longitudinal and lateral motions are jointly considered, and the cooperative control law is designed by deducing state equations. Closed-loop stability of the formation is analyzed, and a necessary and sufficient condition is provided. Measurement errors in position data are suppressed by synchronization technology to improve the control precision. In the simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the formation control strategy.

基于一致性的三维多无人机高精度编队控制策略

概要:本文提出了一种基于二阶一致性的多无人机编队控制策略,通过邻接通信,引入位置和速度协同变量来产生控制命令。提出了协同导航算法和协同控制算法,它们分别控制位置和姿态,联合二者可保持特定几何队形。整个编队系统包含三部分:六自由度无人机模型、协同导航算法、协同控制算法,编队控制策略是闭环和全状态的。协同导航算法是二阶一致性算法,给出期望的加速度、俯仰角速率和偏航角速率。协同控制算法综合考虑纵向和横侧向机动,通过推导状态方程来设计协同控制律。分析了编队的闭环稳定性,给出了稳定的充分必要条件。利用同步技术,抑制了位置数据中的测量误差,提高了控制精度。仿真中,三维编队飞行验证了所提编队控制策略的可行性和有效性。

关键词:多无人机;一致性;协同导航;协同控制;同步技术

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aldo, S., Jaimes, B., Jamshidi, M., 2010. Consensus-based and network control of UAVs. Proc. 5th Int. Conf. on System of Systems Engineering, p.1-6.

[2]Annamalai, A., Motwani, A., Sharma, S.K., et al., 2015. A robust navigation technique for integration in the guidance and control of an uninhabited surface vehicle. J. Navigat., 68(4):750-768.

[3]Bai, C., Duan, H., Li, C., et al., 2009. Dynamic multi-UAVs formation reconfiguration based on hybrid diversity-PSO and time optimal control. Proc. IEEE Intelligent Vehicles Symp., p.775-779.

[4]Bennet, D.J., McInnes, C.R., Suzuki, M., et al., 2011. Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles. J. Guid. Contr. Dynam.,34(6):1899-1908.

[5]Chen, X., Zhang, C., 2013. The method of multi unmanned aerial vehicle cooperative tracking in formation based on the theory of consensus. Proc. 5th Int. Conf. on Intelligent Human-Machine Systems and Cybernetics, p.148-151.

[6]Fukushima, H., Kon, K., Matsuno, F., 2013. Model predictive formation control using branch-and-bound compatible with collision avoidance problems. IEEE Trans. Robot., 29(5):1308-1317.

[7]Hou, H., Wei, R.X., Liu, Y., et al., 2011. UAV control method studied based on high-order sliding mode control. Flight Dynam., 29(1):38-41 (in Chinese).

[8]Jing, Y., Shi, X.P., 2014. NDI formation controller design for UAV based on super twisting algorithm. J. Syst. Eng. Electron., 36(7):1380-1385 (in Chinese).

[9]Kim, S., Kim, Y., 2007. Three dimensional optimum controller for multiple UAV formation flight using behavior- based decentralized approach. Proc. Int. Conf. on Control, Automation and Systems, p.1387-1392.

[10]Kumar, R., Kabamba, P., Hyland, D.C., 2005. Controller design using adaptive random search for close-coupled formation flight. J. Guid. Contr. Dynam.,28(6):1323-1326.

[11]Kuriki, Y., Namerikawa, T., 2013. Consensus-based cooperative control for geometric configuration of UAVs flying in formation. Proc. SICE Annual Conf., p.1237-1242.

[12]Kuriki, Y., Namerikawa, T., 2014. Consensus-based cooperative formation control with collision avoidance for a multi-UAV system. Proc. American Control Conf., p.2077-2082.

[13]Li, S., Chen, Y., Yang, Z., et al., 2012. Formation fight control of multi-UAVs with communication delay. Inform. Contr., 41(2):142-146 (in Chinese).

[14]Liu, B., Tang, W., 2000. Modern Control Theory. China Machine Press, Beijing, p.193-199 (in Chinese).

[15]Mercado, D.A., Castro, R., Lozano, R., 2013. Quadrotors flight formation control using a leader-follower approach. Proc. European Control Conf., p.3858-3863.

[16]Ren, W., 2006. Consensus based formation control strategies for multi-vehicle systems. Proc. American Control Conf., p.4237-4242.

[17]Ren, W., Beard, R., 2002. Virtual structure based spacecraft formation control with formation feedback. Proc. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.1-8.

[18]Seo, J., Ahn, C., Kim, Y., 2009. Controller design for UAV formation flight using consensus based decentralized approach. Proc. AIAA Infotech@Aerospace Conf., p.1-11.

[19]Shan, J., Liu, H., 2005. Close-formation flight control with motion synchronization. J. Guid. Contr. Dynam.,28(6):1316-1320.

[20]Shi, Z.K., 2008. Linear System Theory. Science Press, Beijing (in Chinese).

[21]Wang, J., Wei, R., Dong, Z., et al., 2010. Research on formation flight control of cooperative UAV. Fire Contr. Command Contr., 35(3):34-38.

[22]Wang, X.Y., Wang, X.M., Xiao, Y.H., et al., 2012. Design of robust $H_infty$ controller for UAVs three-dimensional formation flight. Contr. Dec., 27(12):1907-1911 (in Chinese).

[23]Xiao, Y.H., Wang, X.M., Wang, X.Y., 2011. An effective controller design of formation flight of unmanned aerial vehicles (UAV). J. Northwestern Polytech. Univ., 29(6):834-838 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE