CLC number: S154.3
On-line Access:
Received: 2001-05-31
Revision Accepted: 2001-08-21
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5437
Abid Subhani, LIAO Min, HUANG Chang-Yong, XIE Zheng -miao. Alteration of certain soil microbiological and biochemical indices of a paddy soil under anthropogenic stress[J]. Journal of Zhejiang University Science A, 2002, 3(4): 467-474.
@article{title="Alteration of certain soil microbiological and biochemical indices of a paddy soil under anthropogenic stress",
author="Abid Subhani, LIAO Min, HUANG Chang-Yong, XIE Zheng -miao",
journal="Journal of Zhejiang University Science A",
volume="3",
number="4",
pages="467-474",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0467"
}
%0 Journal Article
%T Alteration of certain soil microbiological and biochemical indices of a paddy soil under anthropogenic stress
%A Abid Subhani
%A LIAO Min
%A HUANG Chang-Yong
%A XIE Zheng -miao
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 4
%P 467-474
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0467
TY - JOUR
T1 - Alteration of certain soil microbiological and biochemical indices of a paddy soil under anthropogenic stress
A1 - Abid Subhani
A1 - LIAO Min
A1 - HUANG Chang-Yong
A1 - XIE Zheng -miao
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 4
SP - 467
EP - 474
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0467
Abstract: A 21-day laboratory incubation experiment was conducted to investigate the impact of pesticides (insecticide, herbicide, fungicide) on paddy field soil health under controlled moisture (flooded soil) and temperature (25 °C) environment. The electron transport system (ETS)/Dehydrogenase activity showed negative correlation with pesticides concentrations, decreased with increase of pesticide concentration. The higher doses (5 to 10 times field rates) of pesticides significantly inhibited ETS activity, while lower rates failed to produce any significant reducing effect on the control. The toxicity of pesticides in decreasing the ETS activity was in the order: insecticide > fungicide > herbicide, irrespective of their rates of application. The pesticides increased the soil phenol content, which increased with increasing concentration of agrochemicals. The pesticide application did not produce any significant change in soil protein content. The response of biomass phospholipid content was nearly similar to that of ETS activity. The phospholipid content decreased with the addition of pesticides in the order insecticide > fungicide > herbicide and the toxicity was in the order: 10 FR (field rate) > 5 FR > 1.0 FR > 0.5 FR > control.
[1] Anderson, J. M., Ingram, J. S. I., 1993. Tropical soil biology and fertility: A handbook of methods. CAB International, UK, p.47-104.
[2] Anderson, J. P. E., Domsch, K. H., 1974. Use of selective inhibitors in the study of respiratory activities and shifts in bacterial and fungal populations in soil. Annali di Microbiologia ed Enzymologia 24: 189-194.
[3] Atlas, R. M., Pramer, D., Bartha, R., 1978. Assessment of pesticide effects on non-target soil microorganisms. Soil Biol. Biochem. 10: 231-239.
[4] Benefield, C. B., Howard, P. J. A., Howard, D. M., 1977. The estimation of dehydrogenase activity in soil. Soil Biol. Biochem. 9: 67-70.
[5] Box, J. D., 1983. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17: 511-525.
[6] Briggs, G. G., 1990. Predicting the behaviour of pesticides in soil from their physical and chemical properties. Philos. Trans. R. Soc. 329: 375-382.
[7] Doran, J. W., Fraser, D. F., Culik, M. N. et al., 1987. Influence of alternative and conventional agricultural management on soil microbial processes and nitrogen availability. Am. J. Alter. Agric. 2: 99-106.
[8] El-Ghamry, A. M., Huang, C. Y., Xu, J. M. et al., 2000. Combined effects of chlorsulfuron and bensulfuran-methyl herbicides on the size of microbial biomass in a loamy sand soil. Pak. J. Biol. Sci. 3: 731-734.
[9] Frostegard, A., Tunlid, A., Baath, E., 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Microbiol. Meth. 14: 151-163.
[10] Gee, G. W., Bauder, J. W., 1986. Particle-size analysis. In: Methods of soil analysis, A. Klute (ed.), part 1(2nd edn.), Am. Soc. Agron., Inc., Madison.
[11] Gunapala, N., Scow, K. M., 1998. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 30: 805-816.
[12] Henderson, M. E. K., Farmer, V. C., 1955. Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syringaldehyde and vanillin. J. Gen. Microbiol. 12: 37-46.
[13] Inubushi, K., Brookes, P. C., Jenkinson, D. S., 1991. Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biol. Biochem. 23: 737-741.
[14] Lal, R., Lal, S., 1988. Pesticides and Nitrogen Cycle, Vol. II. CRC Press, Inc. Boca Raton, Florida, p. 1-142.
[15] Lerch, R. N., Barbarick, K. A., Azari, P. et al., 1993. Sewage sludge proteins: I. Extraction methodology. J. Environ. Qual. 22: 620-624.
[16] Lovell, R. D., Jarvis, S. C., Bardgett, R. D., 1995. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biol. Biochem. 27: 969-975.
[17] Martinez-Toledo, M. Y., Salmeron, V., Rodelas, B. et al., 1998. Effects of the fungicide Captan on some functional groups of soil microflora. Appl. Soil Ecol. 7: 245-255.
[18] McLarchey, G. P., Reddy, K. R., 1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. J. Environ. Qual. 27: 1268-1274.
[19] Nelson, D. W., Sommers, L. E., 1982. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis, A. L. Page(ed.), part 2. Am. Soc. Agron., Inc., Madison, USA. p.539-579.
[20] Olk, D. C., Cassman, K. G., Randall, E. W. et al., 1996. Changes in chemical properties of organic matter with intensified rice cropping in tropical low land soil. Eur. J. Soil Sci. 47: 293-303.
[21] Olsen, S. R., Sommer, L. E., 1982. Phosphorous. In: Methods of Soil Analysis, A. L. Page(ed.), part 2. Am. Soc. Agron., Inc., Madison, USA. p.403-448.
[22] Omar, M. N. A., Berge, O., Hassanein, E. E., 1992. In vitro and in situ effects of herbicide thiobencarbon rice-Azospirillum association. Symbiosis 13:55-63.
[23] Petersen, S. O., Henriksen, K., Blackburn, T. H. et al., 1991. A comparison of phospholipid and chloroform fumigation analyses for biomass in soil: potentials and limitations. FEMS Microbiol. Ecol. 85: 257-268.
[24] Pezo, C., Rodelas, B., Salmeron, Y. et al., 1994. Effects of fungicides maneb and mancozeb on soil microbial populations. Toxicol. Environ. Chem. 43: 123-132.
[25] Reichardt, W., Mascarina, G., Padre, B. et al., 1997. Microbial communities of continuously cropped, irrigated rice fields. Appl. Environ. Microbiol. 63: 233-238.
[26] Sanchez, C. E., Rodelas, B., Martinez-Toledo, M. Y. et al., 1994. Diflubenzuron and the biological activity of Azospirillum brasilense. Toxicol. Environ. Chem. 42: 241-247.
[27] Soderstrom, B., Baath, E., Lundgren, B., 1983. Decrease in soil quality: soil microorganisms. Am. J. Alter. Agric. 7: 33-37.
[28] Sparling, G. P., Ord, B. G., Vaughan, D., 1981. Changes in microbial bio mass and activity in soils amended with phenolic acids. Soil Biol. Biochem. 13: 455-460.
[29] Stevenson, F. J., 1994. Humus chemistry: Genesis, composition, reactions. 2nd edn. John Wiley and Sons, New York, p. 496.
[30] Vaughan, D., Ord, B. G., 1980. An effect of soil organic matter on invertase activity in soil. Soil Biol. Biochem. 12: 449-451.
[31] Wang, T. S. C., Yang, T. K., Chuang, T. T., 1967. Soil phenolic acids as plant growth inhibitors. Soil Sci. 103: 239-246.
Open peer comments: Debate/Discuss/Question/Opinion
<1>