CLC number: O6-051
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 6
Clicked: 6073
MOGHANI Ghorban Ali, ASHRAFI Ali Reza, HAMADANIAN Masood. Symmetry properties of tetraammine platinum(II) with C2v and C4v point groups[J]. Journal of Zhejiang University Science B, 2005, 6(3): 222-226.
@article{title="Symmetry properties of tetraammine platinum(II) with C2v and C4v point groups",
author="MOGHANI Ghorban Ali, ASHRAFI Ali Reza, HAMADANIAN Masood",
journal="Journal of Zhejiang University Science B",
volume="6",
number="3",
pages="222-226",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.B0222"
}
%0 Journal Article
%T Symmetry properties of tetraammine platinum(II) with C2v and C4v point groups
%A MOGHANI Ghorban Ali
%A ASHRAFI Ali Reza
%A HAMADANIAN Masood
%J Journal of Zhejiang University SCIENCE B
%V 6
%N 3
%P 222-226
%@ 1673-1581
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.B0222
TY - JOUR
T1 - Symmetry properties of tetraammine platinum(II) with C2v and C4v point groups
A1 - MOGHANI Ghorban Ali
A1 - ASHRAFI Ali Reza
A1 - HAMADANIAN Masood
J0 - Journal of Zhejiang University Science B
VL - 6
IS - 3
SP - 222
EP - 226
%@ 1673-1581
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.B0222
Abstract: Let G be a weighted graph with adjacency matrix
[1] Ashrafi, A.R., Hamadanian, M., 2003. The full non-rigid group theory for tetraammine platinium(II). Croat. Chem. Acta, 76(4):299-303.
[2] Ashrafi, A.R., Hamadanian, M., 2004. Group theory for tetraammine platinum(II) with C2v and C4v point group in the non-rigid system. J. Appl. Math. & Computing, 14:289-303.
[3] Balasubramanian, K., 1980. The symmetry groups of non-rigid molecules as generalized wreath products and their representations. J. Chem. Phys., 72:665-677.
[4] Balasubramanian, K., 1981. Generating functions for the nuclear spin statistics of non-rigid molecules. J. Chem. Phys., 75:4572-4585.
[5] Balasubramanian, K., 1982. The symmetry groups of chemical graphs. Intern. J. Quantum Chem., 21:411-418.
[6] Balasubramanian, K., 1983. Group theory of non-rigid molecules and its applications. Studies Phys. Theor. Chem., 23:149-168.
[7] Balasubramanian, K., 1985. Applications of combinatorics and graph theory to spectroscopy and quantum chemistry. Chem. Rev., 85:599-618.
[8] Balasubramanian, K., 1995. Graph-theoretical perception of molecular symmetry. Chem. Phys. Letters, 232:415-423.
[9] Balasubramanian, K., 2004a. Non-rigid group theory, tunneling splitting and nuclear spin statistics of water pentamer: (H2o)5. j. phys. chem., 108:5527-5536.
[10] balasubramanian, K., 2004b. Group theoretical analysis of vibrational modes and rovibronic levels of extended aromatic C48N12 azafullerene. Chem. Phys. Letters, 391:64-68.
[11] Balasubramanian, K., 2004c. Nuclear spin statistics of extended aromatic C48N12 azafullerene. Chem. Phys. Letters, 391:69-74.
[12] Ezra, G.S., 1982. Symmetry Properties of Molecules. Lecture Notes in Chemistry 28, Springer.
[13] Hamadanian, M., Ashrafi, A.R., 2003a. The full non-rigid group theory for cis- and trans-dichlorodiammine platinium(II) and trimethylamine. Croat. Chem. Acta, 76(4):305-312.
[14] Hamadanian, M., Ashrafi, A.R., 2003b. The full non-rigid group theory for trimethylamine. Int. J. Math. & Math. Sci., 42:2701-2706.
[15] Herndon, W.C., 1983. Studies in Physical and Theoretical Chemistry. In: King, R.B. (Ed.), Chemical Applications of Graph Theory and Topology. Elsevier, Amsterdam, 28:231-242.
[16] James, G., Liebeck, M., 1993. Representations and Characters of Groups. Cambridge University Press, Cambridge.
[17] Longuet-Higgins, H.C., 1963. The symmetry groups of non-rigid molecules. Mol. Phys., 6:445-460.
[18] Randic, M., 1974. On the recognition of identical graphs representing molecular topology. J. Chem. Phys., 60:3920-3928.
[19] Randic, M., 1976. On discerning symmetry properties of graphs. Chem. Phys. Letters, 42(2):283-287.
[20] Randic, M., Davis, M.I., 1984. Symmetry properties of chemical graphs. VI. isomerizations of octahedral complexes. Intern. J. Quantum Chem., 26:69-89.
[21] Schönert, M., Besche, H.U., Breuer, T., Celler, F., Eick, B., Felsch, V., Hulpke, A., Mnich, I., Nickel, W., Pfeiffer, G., Polis, U., Theiβen, H., Niemeyer, A., 1995. GAP, Groups, Algorithms and Programming. Lehrstuhl De für Mathematik, RWTH, Aachen.
[22] Trinajstic, N., 1992. Chemical Graph Theory. CRC Press, Boca Raton, FL.
Open peer comments: Debate/Discuss/Question/Opinion
<1>