CLC number: TP24
On-line Access:
Received: 2005-03-10
Revision Accepted: 2005-07-15
Crosschecked: 0000-00-00
Cited: 3
Clicked: 6582
Zhuang Hui-zhong, Du Shu-xin, Wu Tie-jun. On-line real-time path planning of mobile robots in dynamic uncertain environment[J]. Journal of Zhejiang University Science A, 2006, 7(4): 516-524.
@article{title="On-line real-time path planning of mobile robots in dynamic uncertain environment",
author="Zhuang Hui-zhong, Du Shu-xin, Wu Tie-jun",
journal="Journal of Zhejiang University Science A",
volume="7",
number="4",
pages="516-524",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0516"
}
%0 Journal Article
%T On-line real-time path planning of mobile robots in dynamic uncertain environment
%A Zhuang Hui-zhong
%A Du Shu-xin
%A Wu Tie-jun
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 4
%P 516-524
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0516
TY - JOUR
T1 - On-line real-time path planning of mobile robots in dynamic uncertain environment
A1 - Zhuang Hui-zhong
A1 - Du Shu-xin
A1 - Wu Tie-jun
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 4
SP - 516
EP - 524
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0516
Abstract: A new path planning method for mobile robots in globally unknown environment with moving obstacles is presented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.
[1] Fujumura, K., 1992. Route Planning for Mobile Robots amidst Moving Obstacles. IROS’92, p.1751-1758.
[2] Fiorinio, P., Shiller, Z., 1998. Motion planning in dynamic environments using velocity obstacles. Int. Journal of Robotics Research, 17(7):760-772.
[3] Kalman, R., 1960. A new approach to linear filtering and prediction problem. Journal of Basic Engineering, 82(Series D):35-45.
[4] Lee, D.T.L., Morf, M., Friedlander, B., 1981. Recursive least squares ladder estimation algorithms. IEEE Trans. Acoustics, Speech, Signal Processing, 29(3):627-641.
[5] Luo, R., Chen, T., 1999. Target Tracking by Grey Prediction Theory and Look-ahead Fuzzy Logic Control. Proceedings of the IEEE International Conference on Robotics and Automation, p.1176-1181.
[6] Makhoul, J., 1975. Linear Prediction: A Tutorial Review. Proc. IEEE, 63:561-580.
[7] Rude, M., 1997. Collision avoidance by using space-time representations of motion processes. Autonomous Robots, 4(1):101-119.
[8] Sen, A., Srivastava, M., 1990. Regression Analysis: Theory, Methods and Applications. Springger-Verlay, New York.
[9] Shensa, M.J., 1981. Recursive least squares lattice algorithms—A geometrical approach. IEEE Trans. Auto. Control, 26(3):695-702.
[10] Takeshi, A., 1994. Motion Planning for Multiple Obstacles Avoidance of Autonomous Mobile Robot Using Hierarchical Fuzzy Rule. Proceedings of IEEE International Conference on Multi-sensor Fusion and Integration for Intelligent System (MFI’94), Las Vegas, p.265-271.
[11] Tang, P., Zhang, Q., Yang, Y.M., 2000. Studying on Path Planning and Dynamic Obstacle Avoiding of Soccer Robot. Proceedings of the 3rd World Congress on Intelligent Control and Automation, University of Science and Technology of China, Hefei, p.1244-1247.
[12] Zhu, Q., 1991. Hidden markov model for dynamic obstacle avoidance of mobile robot navigation. IEEE Trans. on Robotics and Automation, 7(3):390-396.
Open peer comments: Debate/Discuss/Question/Opinion
<1>