Full Text:   <3223>

CLC number: TN929.12

On-line Access: 

Received: 2006-04-10

Revision Accepted: 2006-08-13

Crosschecked: 0000-00-00

Cited: 11

Clicked: 3702

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.2 P.186~191


Free-Space Optical communication using visible light

Author(s):  HU Guo-yong, CHEN Chang-ying, CHEN Zhen-qiang

Affiliation(s):  Institute of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; more

Corresponding email(s):   jnu_hgy@163.com

Key Words:  Visible light communication, Red light laser, Free-Space Optical communication, Wireless laser communication

HU Guo-yong, CHEN Chang-ying, CHEN Zhen-qiang. Free-Space Optical communication using visible light[J]. Journal of Zhejiang University Science A, 2007, 8(2): 186~191.

@article{title="Free-Space Optical communication using visible light",
author="HU Guo-yong, CHEN Chang-ying, CHEN Zhen-qiang",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Free-Space Optical communication using visible light
%A HU Guo-yong
%A CHEN Chang-ying
%A CHEN Zhen-qiang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 2
%P 186~191
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0186

T1 - Free-Space Optical communication using visible light
A1 - HU Guo-yong
A1 - CHEN Chang-ying
A1 - CHEN Zhen-qiang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 2
SP - 186
EP - 191
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0186

The possibility of visible red light laser being used as signal light source for Free-Space Optical (FSO) communication is proposed. Based on analysis of transmission in atmospheric channel concerning 650 nm laser beam, performance of wireless laser communication link utilizing a low power red laser diode was evaluated. The proposed system can achieve a maximum range of 300 m at data rate 100 Mb/s theoretically. An experimental short-range link at data rate 10 Mb/s covering 300 m has been implemented in our university. It is feasible to enhance the system performance such as link range and data rate by increasing transmitting power and decreasing laser beam divergence angle or through other approaches.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Achour, M., 2002a. Simulating atmospheric free-space optical propagation, part I: rainfall attenuation. Proc. SPIE, 4635(1):192-201.

[2] Achour, M., 2002b. Simulating atmospheric free-space optical propagation, part II: Haze, fog and low clouds attenuations. Proc. SPIE, 4873(8):1-12.

[3] Ai, Y., Geng, Q., Yang, J.L., Yang, H.L., Zhou, Y.L., Lu, X.Q., Li, K., 2006. GPS 2.1 km WDM free-space optical communication experiments. Proc. SPIE, 6025(1):256-261.

[4] Bohren, C.F., Huffman, D.R., 1983. Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York, USA.

[5] Kim, I.I., Mcarthur, B., Korevaar, E., 2000. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Proc. SPIE, 4214(2):26-37.

[6] Leitgeb, E., Bregenzer, J., Fasser, P., Gebhart, M., 2002. FSO—Extension to Fiber-Networks for the “Last Mile”. Proceedings of the 15th Annul IEEE, Glasgow.

[7] Leitgeb, E., Birnbacher, J., Gebhart, M., Fasser, P., Merdonig, A., 2003a. Free-space optics: Broadband wireless supplement to fiber networks. Proc. SPIE, 4976(28):57-68.

[8] Leitgeb, E., Gebhart, M., Fasser, P., Bregenzer, J., Tanczos, J., 2003b. Impact of atmospheric effects in Free Space Optics transmission systems. Proc. SPIE, 4976(1):86-97.

[9] Majumdar, A.K., 2005. Free-space laser communication performance in the atmospheric channel. Journal of Optical and Fiber Communications Reports, 2(4):345-396.

[10] McCartney, E.J., 1976. Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley & Sons, New York, USA.

[11] Pang, G., 2004. Information Technology Based on Visible LEDs for Optical Wireless Communications. 2004 IEEE Region 10 Conference: Analog and Digital Techniques in Electrical Engineering, p.B395-B398.

[12] Pang, G., Kwan, T., Liu, H., Chan, C.H., 1999a. Optical Wireless Based on High Brightness Visible LEDs. Proceedings of the 1999 IEEE Industry Applications Conference, p.1693-1699.

[13] Pang, G., Kwan, T., Chan, C.H., Liu, H., 1999b. LED Traffic Light as a Communications Device. IEEE Conference on Intelligent Transportation Systems, p.788-793.

[14] Pang, G., Kwan, T., Liu, H., Chan, C.H., 2002. LED wireless. IEEE Industry Applications Magazine, 8(1):21-28.

[15] Personick, S.D., 1973. Receiver design for digital fiber optic communications systems: I and II. Bell System Technical Journal, 52(6):843-886.

[16] Shaik, K.S., 1988. Atmospheric Propagation Effects Relevant to Optical Communication. TDA Progress Report, p.180-188.

[17] Sidorovich, V.G., 2002. Solar background effects in wireless optical communications. Proc. SPIE, 4873(8):133-142.

[18] Sizun, H., Alnaboulsi, M., Veyrunes, O., Bouchet, O., 2002. Free-space Optical Communication Links, Bibliographical Study and Experimentation. European Workshop on Integrated Radio-communication Systems, Angers, France.

[19] Strohbehn, J.W., 1978. Laser Beam Propagation in the Atmosphere. Spinger-Verlag Press, New York, USA, p.1-6.

[20] Van, H.C., 1991. Light Scattering by Small Particles. Dover Publications, Inc., New York, USA.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE