Full Text:   <1932>

CLC number: R683

On-line Access: 

Received: 2006-11-30

Revision Accepted: 2006-12-15

Crosschecked: 0000-00-00

Cited: 2

Clicked: 3310

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.2 P.221~227


Advances in research of stress-assisted corrosion fatigue problem

Author(s):  TANG Zhi-bo, LI Qiang

Affiliation(s):  Division of Engineering, Zhejiang Ocean University, Zhoushan 316004, China

Corresponding email(s):   Zhibo_Tang@zjou.edu.cn

Key Words:  Stress corrosion, Finite element method (FEM), Fracture, Static fatigue, Meshless local Petrov-Galerkin (MLPG)

TANG Zhi-bo, LI Qiang. Advances in research of stress-assisted corrosion fatigue problem[J]. Journal of Zhejiang University Science A, 2007, 8(2): 221~227.

@article{title="Advances in research of stress-assisted corrosion fatigue problem",
author="TANG Zhi-bo, LI Qiang",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Advances in research of stress-assisted corrosion fatigue problem
%A TANG Zhi-bo
%A LI Qiang
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 2
%P 221~227
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0221

T1 - Advances in research of stress-assisted corrosion fatigue problem
A1 - TANG Zhi-bo
A1 - LI Qiang
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 2
SP - 221
EP - 227
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0221

Ceramic materials are notable for their rigidity, insulation and resistance to hostile environment. Nevertheless, if a stressed ceramic component is exposed to chemical attack, it may suffer from a form of delayed fracture known as static fatigue. From the point of view of a designer, it is clearly desirable to determine the behavior of sub-critical crack growth; the crack path and crack growth rate, as a function of material properties and loading conditions are of particular interest. This paper presents a review of advances in stress assisted corrosion problem in history and its corresponding numerical approaches in the last decades, and finally, comes up with consideration and crucial suggestions for future work.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Atluri, S.N., Zhu, T., 1998a. A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computational modeling and simulation. Comput. Modeling Simulation in Engrg., 3:187-196.

[2] Atluri, S.N., Zhu, T., 1998b. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 22(2):117-127.

[3] Atluri, S.N., Zhu, T., 2000a. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., 25(2-3):169-179.

[4] Atluri, S.N., Zhu, T., 2000b. New concepts in meshless methods. Int. J. Numer. Mech. Engrg., 47(1-3):537-556.

[5] Atluri, S.N., Shen, S., 2002a. The meshless local Petrov-Galerkin (MLPG) method: A simple and less-costly alternative to the finite element and boundary element methods. CMES: Computer Modeling in Engineering & Science, 3(1):11-51.

[6] Atluri, S.N., Shen, S., 2002b. The Meshless Local Petrov-Galerkin (MLPG) Method. Tech. Science Press, Georgia, p.480.

[7] Atluri, S.N., Cho, J.Y., Kim, H.G., 1999a. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Comput. Mech., 24(5):334-347.

[8] Atluri, S.N., Kim, H.G., Cho, J.Y., 1999b. A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput. Mech., 24(5):348-372.

[9] Atluri, S.N., Sladek, J., Sladek, V., Zhu, T., 2000. The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity. Comput. Mech., 25(2-3):180-198.

[10] Bailey, A.I., Kay, S.M., 1967. A Direct Measurement of the Influence of Vapour, of Liquid, and of Oriented Monolayer on the Interracial Energy of Mica. Proceedings of the Royal Society of London, A301:1464.

[11] Bando, Y., Setsuro, I., Tomozawa, M., 1984. Direct observation of crack tip geometry of SiO2 glass by high resolution electron microscopy. J. Am. Ceram. Soc., 67:C36-C37.

[12] Berenstein, N., Hess, D.W., 2003. Lattice trapping barriers to brittle fracture. Phys. Rev. Lett., 91(2):025501-1-025501-4.

[13] Charles, R.J., Hillig, W.B., 1961. The Kinetics of Glass Failure by Stress Corrosion. Symposium on Mechanical Strength of Glass and Ways of Improving it. Union Scientifique Continentale du Verre Charleroi Belgium, p.511-527.

[14] Chevalier, J., Olagnon, C., Fantozzi, G., 1999. Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J. Am. Ceram. Soc., 82:3129-3138.

[15] Chuang, T.J., Fuller, E.R., 1992. Extended Charles-Hillig Theory for stress corrosion notching of glass. J. Am. Ceram. Soc., 75(3):540-545.

[16] Cook, R.F., 1999. Environmentally controlled non-equilibrium crack propagation in ceramics. Mat. Sci and Engng. A, 260(1-2):29-40.

[17] Cook, R.F., Liniger, E.G., 1993. Kinetics of indentation cracking in glass. J. Am. Ceram. Soc., 76(5):1096-1106.

[18] Curtin, W.A., 1990. On lattice trapping of cracks. J. Mater. Res., 5:1549.

[19] Dai, Y., Takahashi, K., Yamaguchi, I., 1995. Water corrosion behaviour of fluoroaluminate glass. J. Am. Ceram. Soc., 78(1):183.

[20] Freiman, S.W., White, G.S., Fuller, E.R.Jr., 1985. Environmentally enhanced Notch growth in soda-lime glass. J. Am. Ceram. Soc., 68(3):108-112.

[21] Grenet, L., 1889. Recherches sur la résistance mécanique des verres. Bull. Soc. Encour. Ind. Nat., 4:838-848.

[22] Hillig, W.B., Charles, R.J., 1965. Surfaces, Stress-dependent surface Reactions and Strength. In: Zackaray, V.F. (Ed.), High Strength Materials. Wiley & Sons, New York, p.682-705.

[23] Lawn, B.R., 1975. An atomistic model of kinetic crack growth in brittle solids. J. Mat. Sci., 10(3):469-480.

[24] Lawn, B.R., Jakus, R., Gonzalez, A.C., 1985. Sharp vs blunt crack hypotheses in the strength of glass: A critical study using indentation flaws. J. Am. Ceram. Soc., 68(1):25-34.

[25] Michalske, T.A., 1983. The Stress Corrosion Limit: Its Measurement and Implications. In: Bradt, R.C., Evans, A.G., Hasselman, D.P.H., Lange, F.F. (Eds.), Fracture Mechanics of Ceramics. Plenum Press, New York, 5:277-289.

[26] Michalske, T.A., Freiman, S.W., 1982. A molecular interpretation of stress corrosion in silica. Nature, 295(5849):511-512.

[27] Mould, R.E., Southwick, R.D., 1959a. Strength and static fatigue of abraded glass under controlled ambient conditions, Part I. J. Amer. Ceram. Soc., 42(11):542-581.

[28] Mould, R.E., Southwick, R.D., 1959b. Strength and static fatigue of abraded glass under controlled ambient conditions, Part II. J. Amer. Ceram. Soc., 42(12):582-607.

[29] Orowan, E., 1944. The fatigue of glass under stress. Nature, 154:341-343.

[30] Qian, L.F., Batra, R.C., Chen, L.M., 2004. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Composites: Part B, Engineering, 35(6-8):685-697.

[31] Salganik, R., Rapoport, L., Gotlib, V., 1997. Effect of structure on environmentally assisted subcritical crack growth in brittle materials. Int. J. Fract., 87(1):21-46.

[32] Shepard, D., 1968. A Two-dimensional Function for Irregularly Spaced Points. Proc. of ACM Nat’l Conf., p.517-524.

[33] Tang, Z., 2002. Numerical Simulations of Subcritical Notch Growth by Stress Corrosion in an Elastic Solid and Interface Between Two Rigid Solids. Ph.D Thesis, Brown University, p.105.

[34] Tang, Z., Bower, A.F., Chuang, T.J., 2000. Numerical Simulations of Subcritical Notch Growth by Stress Corrosion in an Elastic Solid. In: Chuang, T.J., Rudnicki, J. (Eds.), Multi-scale Deformation and Fracture in Materials and Structures. Kluwer, p.331-348.

[35] Tang, Z., Shen, S., Atluri, S.N., 2003. Analysis of materials with strain-gradient effects: A meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only. CMES: Computer Modeling in Engineering & Science, 4(1):177-196.

[36] Tang, Z., Bower, A.F., Chuang, T.J., 2004. Numerical simulations of the growth and deflection of a stress-corrosion notch on the interface between two reactive solids. Int. J. Fract., 127(1):1-20.

[37] Thomson, R., Hsieh, C., Rana, V., 1971. Lattice trapping of fracture cracks. J. Appl. Phys., 42(8):3154-3160.

[38] Wiederhorn, S.M., 1967. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc., 50(8):407-414.

[39] Wiederhorn, S.M., 1975. Crack growth as an interpretation of static fatigue. J. Non-Cryst. Solids, 19(1):169-181.

[40] Wiederhorn, S.M., Evans, A.G., Fuller, E.R., Johnson, H., 1974. Application of fracture mechanics to space-shuttle windows. J. Am. Ceram. Soc., 57(7):319-323.

[41] Wiederhorn, S.M., Dretzke, A., Rödel, J., 2003. Near the static fatigue limit in glass. Int. J. Fract., 121(1/2):1-7.

[42] Wu, Y.L., Liu, G.R., Gu, Y.T., 2005. Application of meshless local Petrov-Galerkin (MLPG) approach to simulation of incompressible flow. Numerical Heat Transfer: Part B —Fundamentals, 48(5):459-475.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE