CLC number: TQ343.2
On-line Access:
Received: 2006-10-24
Revision Accepted: 2006-12-19
Crosschecked: 0000-00-00
Cited: 31
Clicked: 6402
SREEKUMAR M., SINGAPERUMAL M., NAGARAJAN T., ZOPPI M., MOLFINO R.. Recent advances in nonlinear control technologies for shape memory alloy actuators[J]. Journal of Zhejiang University Science A, 2007, 8(5): 818-829.
@article{title="Recent advances in nonlinear control technologies for shape memory alloy actuators",
author="SREEKUMAR M., SINGAPERUMAL M., NAGARAJAN T., ZOPPI M., MOLFINO R.",
journal="Journal of Zhejiang University Science A",
volume="8",
number="5",
pages="818-829",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0818"
}
%0 Journal Article
%T Recent advances in nonlinear control technologies for shape memory alloy actuators
%A SREEKUMAR M.
%A SINGAPERUMAL M.
%A NAGARAJAN T.
%A ZOPPI M.
%A MOLFINO R.
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 5
%P 818-829
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0818
TY - JOUR
T1 - Recent advances in nonlinear control technologies for shape memory alloy actuators
A1 - SREEKUMAR M.
A1 - SINGAPERUMAL M.
A1 - NAGARAJAN T.
A1 - ZOPPI M.
A1 - MOLFINO R.
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 5
SP - 818
EP - 829
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0818
Abstract: This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.
[1] Abadie, J., Chaillet, N., Lexcellent, C., 2002. An integrated shape memory alloy micro-actuator controlled by thermoelectric effect. Sensors and Actuators A: Physical, 99(3):297-303.
[2] Asada, H.H., Mascaro, S., 2002. Wet Shape Memory Alloy Actuators. MIT Home Automation and Healthcare Consortium, Final Report.
[3] Asada, H.H., Cho, K.J., Au, S., 2000-2002. Large-scale Servo Control Using a Matrix Network for Driving a Large Number of SMA Actuators. Final Report of MIT Home Automation and Healthcare Consortium, (3-4):1-22.
[4] Bhattacharyya, A., Lagoudas, D.C., Wang, Y.C., Kinra, V.K., 1995. On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment. Smart Mater. Struct., 4(4):252-263.
[5] Briggs, J.P., Ostrowski, J.P., 2002. Experimental feed forward and feedback control of a one-dimensional SMA composite. Smart Mater. Struct., 11(1):9-23.
[6] Chen, H., Kubo, H., 1996. Martensitic phase transformations and shape memory alloys. Current Opinion in Solid States & Materials Science, 1(3):349-354.
[7] Choi, S.B., 2006. Position control of a single-link mechanism activated by shape memory alloy springs: experimental results. Smart Mater. Struct., 15(1):51-58.
[8] Choi, S.B., Han, Y.M., Kim, J.H., Cheong, C., 2001. Force tracking control of a flexible gripper featuring shape memory alloy actuators. Mechatronics, 11(6):677-690.
[9] Dickinson, C.A., Wen, J.T., 1998. Feedback control using shape memory alloy actuators. J. Intelligent Material Systems and Structures, 9:242-250.
[10] Ding, Z., Lagoudas, D.C., 1997. Solution behavior of the transient heat transfer problem in thermoelectric shape memory alloy actuators. The SIAM Journal of Applied Mathematics, 57(1):34-52.
[11] Duerig, T., Pelton, A., Stöckel, D., 1999. An overview of Nitinol medical applications. Materials Science and Engineering A, 273-275(1-2):149-160.
[12] Dutta, S.M., Ghorbel, F.H., 2005. Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Transactions on Mechatronics, 10(2):189-197.
[13] Duval, L., Noori, M.N., Hou, Z., Davoodi, H., Seelecke, S., 2000. Random vibration studies of an SDOF system with shape memory restoring force. Physica B: Condensed Matter, 275(1-3):138-141.
[14] Elahinia, M.H., Ashrafiuon, H., 2002. Nonlinear control of a shape memory alloy actuated manipulator. Transactions of the ASME, 124:566-575.
[15] Elahinia, M.H., Henneke, E., Ahmadian, M., 2004a. Stress-based Sliding Mode Control of a Rotary SMA-actuated Manipulator. Proc. SPIE 2004, Smart Structures and Materials/NDE, San Diego, CA.
[16] Elahinia, M.H., Seigler, T.M., Leo, D.J., Ahmadian, M., 2004b. Nonlinear stress-based control of a rotary SMA-actuated manipulator. J. Intelligent Material Systems and Structures, 15(6):495-508.
[17] Etxebarria, V., Sanz, A., Lizarraga, I., 2005. Control of a lightweight flexible robotic arm using sliding modes. International Journal of Advanced Robotic Systems, 2(2):103-110.
[18] Fletcher, R., 1996. Force transduction materials for human technology interfaces. IBM Systems Journal, 35(3-4):630-638.
[19] Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M., 2004. TiNi-based thin films in MEMS applications: a review. Sensors and Actuators A: Physical, 112(2-3):395-408.
[20] Ghomshei, M.M., Tabandeh, N., Ghazavi, A., Gordaninejad, F., 2001a. A three-dimensional shape memory alloy/elastomer actuator. Composites Part B: Engineering, 32(5):441-449.
[21] Ghomshei, M.M., Khajepour, A., Tabandeh, N., Behdinan, K., 2001b. Finite element modeling of shape memory alloy composite actuators: theory and experiment. J. Intelligent Material Systems and Structures, 12(11):761-773.
[22] Gorbet, R.B., Russell, R.A., 1995. A novel differential shape memory alloy actuator for position control. J. Robotica, 13:423-430.
[23] Gorbet, R.B., Wang, D.W.L., 1998. A dissipativity approach to stability of a shape memory alloy position control system. IEEE Transactions on Control Systems Technology, 6(4):554-562.
[24] Gorbet, R.B., Morris, K.A., Wang, D.W.L., 2001. Passivity-based stability and control of hysteresis in smart actuators. IEEE Transactions on Control Systems Technology, 9(1):5-16.
[25] Gordaninejad, F., Wu, W., 2001. A two-dimensional shape memory/elastomer actuator. Int. J. Solids and Structure, 38(19):3393-3409.
[26] Grant, D., Hayward, V., 1997. Variable structure control of shape memory alloy actuators. IEEE Control Systems Magazine, 17(3):80-88.
[27] Hornblower, V., 2002. Shape Memory Alloys in the Application of Brachiotherapy. S.O.T.A. Report.
[28] Hull, P.V., Canfield, S.L., Carrington, C., 2004. A radiant energy-powered shape memory alloy actuator. Mechatronics, 14(7):757-775.
[29] Icardi, U., 2001. Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments. Composites Part B: Engineering, 32(3):259-267.
[30] Ishii, H., Ting, K.L., 2004. SMA actuated compliant bistable mechanisms. Mechatronics, 14(4):421-437.
[31] Kahn, H., Huff, M.A., Heuer, A.H., 1998. The TiNi shape-memory alloy and its applications for MEMS. J. Micromech. Microeng., 8(3):213-221.
[32] Kumagai, A., Liu, T.I., Hozian, P., 2006. Control of shape memory alloy actuators with a neuro-fuzzy feed forward model element. J. Intelligent Manufacturing, 17(1):45-56.
[33] Lagoudas, D.C., Garner, L.J., Rediniotis, O.K., Wilson N., 1999. Modeling and Experiments of the Hysteretic Response of an Active Hydrofoil Actuated by SMA Line Actuators. In: Smart Structures. Kluwer Academic Publishers, p.153-162.
[34] Lee, H.J., Lee, J.J., 2000. Evaluation of the characteristics of a shape memory alloy spring actuator. Smart Mater. Struct., 9(6):817-823.
[35] Lee, H.J., Lee, J.J., 2004. Time delay control of a shape memory alloy actuator. Smart Mater. Struct., 13(1):227-239.
[36] Lee, H.J., Lee, J.J., Kwon, D.S., Yoon, Y.S., 2001. Neural network based control of SMA actuator for the active catheter. Int. J. Human-friendly Welfare Robotic Systems, 2(2):40-45.
[37] Lee, C.J., Mavroidis, C., 2002. Analytical Dynamic Model and Experimental Robust and Optimal Control of a Shape-memory-alloy Bundle Actuator. Proceedings of the ASME IMECE, Paper IMECE2002-33439, New Orleans, LA, 71:491-498.
[38] Li, Y., Sasaki, M., Hane, K., 2005. A two-dimensional self aligning system driven by shape memory alloy actuators. Optics & Laser Technology, 37(2):147-149.
[39] Lim, S.C., Park, J.S., Choi, S.B., Park, Y.P., 2001. Non-contact start/stop motion control of HDD suspension using shape memory alloy actuators. Smart Mater. Struct., 10(5):1069-1077.
[40] Ma, N., Song, G., 2003. Control of shape memory alloy actuator using pulse width modulation. Smart Mater. Struct., 12(5):712-719.
[41] Ma, N., Song, G., Lee, H.J., 2004. Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct., 13(4):777-783.
[42] Madill, D.R., Wang, D., 1998. Modeling and L2-stability of a shape memory alloy position control system. IEEE Transactions on Control Systems Technology, 6(4):473-481.
[43] Majima, S., Kodama, K., Hasegawa, T., 2001. Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Transactions on Control Systems Technology, 9(1):54-59.
[44] Mavroidis, C., 2002. Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14(1):1-32.
[45] Mavroidis, C., Pfeiffer, C., Mosley, M., 2000. Conventional Actuators, Shape Memory Alloys, and Electrorheological fluids. Invited Chapter in Automation, Miniature Robotics and Sensors for Non-destructive Testing and Evaluation. The American Society for Nondestructive Testing, p.189-214.
[46] Mechado, L.G., Savi, M.A., 2003. Medical applications of shape memory alloys. Review. Brazilian Journal of Medical and Biological Research, 36:683-691.
[47] Meier, H., Oelschlaeger, L., 2004. Numerical thermo-mechanical modeling of shape memory alloy wires. Materials Science and Engineering A, 378(1-2):484-489.
[48] Moallem, M., 2003. Deflection control of a flexible beam using shape memory alloy actuators. Smart Mater. Struct., 12(6):1023-1027.
[49] Moallem, M., Jun, L., 2005. Application of shape memory alloy actuators for flexure control: theory and experiments. IEEE/ASME Transactions on Mechatronics, 10(5):495-501.
[50] Morgan, N.B., 2004. Medical shape memory alloy applications-the market and its products. Materials Science and Engineering A, 378(1-2):16-23.
[51] Mosley, M.J., Mavroidis, C., 2001. Experimental nonlinear dynamics of a shape memory alloy wire bundle actuator. J. Dynamic Systems, Measurement, and Control, 123(1):103-112.
[52] Mukherjee, R., Christian, T.F., Thiel, R.A., 1996. An actuation system for the control of multiple shape memory alloy actuators. Sensors and Actuators A: Physical, 55(2-3):185-192.
[53] Otsuka, K., Ren, X., 1999. Review: recent developments in the research of shape memory alloys. Intermetallics, 7(5):511-528.
[54] Potapov, P.L., Da Silva, E.P., 2000. Time response of shape memory alloy actuators. J. Intelligent Material Systems and Structures, 11(2):125-134.
[55] Qiu, J., Tani, J., Osanai, D., Urushiyama, Y., Lewinnek, D., 2000. High-speed response of SMA actuators. Inter. J. of Applied Electromagnetics and Mechanics, 12:87-100.
[56] Rediniotis, O.K, Lagoudas, D.C., Garner, L.J., Wilson, N., 1998. Experiments and Analysis of an active Hydrofoil with SMA actuators. American Institute of Aeronautics and Astronautics Inc. AIAA Paper, p.98-0102.
[57] Rediniotis, O.K., Lagoudas, D.C., Jun, H.Y., Allen, R.D., 2002. Fuel-powered compact SMA actuator. Proceedings of SPIE, 4698:441-453.
[58] Reynaerts, D., Brussel, H.V., 1998. Design aspects of shape memory actuators. Mechatronics, 8(6):635-656.
[59] Rustighi, E., Brennan, M.J., Mace, B.R., 2005a. A shape memory alloy adaptive tuned vibration absorber: design and implementation. Smart Mater. Struct., 14(1):19-28.
[60] Rustighi, E., Brennan, M.J., Mace, B.R., 2005b. Real-time control of a shape memory alloy adaptive tuned vibration absorber. Smart Mater. Struct., 14(6):1184-1195.
[61] Sadek, K., Bhattacharyya, A., Moussa, W., 2003. Effect of variable material properties and environmental conditions on thermomechanical phase transformations in shape memory alloy wires. Computational Materials Science, 27(4):493-506.
[62] Seelecke, S., Muller, I., 2004. Shape memory alloy actuators in smart structures: Modeling and simulation. Appl. Mech. Rev., 57(1):23-46.
[63] Selden, Brian., Cho, K., Asada, H.H., 2006. Segmented shape memory alloy actuators using hysteresis loop control. Smart Mater. Struct., 15(2):642-652.
[64] Shameli, E., Alasty, A., Salaarieh, H., 2005. Stability analysis and nonlinear control of a miniature shape memory alloy actuator for precise applications. Mechatronics, 15(4):471-486.
[65] Shu, S.G., Lagoudas, D.C., Hughes, D., Wen, J.T., 1997. Modeling of a flexible beam actuated by shape memory alloy wires. Smart Mater. Struct., 6(3):265-277.
[66] Song, G., 2003. A neural network inverse model for a shape memory alloy wire actuator. J. Intelligent Material Systems and Structures, 14(6):371-377.
[67] Song, G., Ma, N., 2003. Control of shape memory alloy actuators using pulse-width pulse-frequency (PWPF). J. Intelligent Material Systems and Structures, 14(1):15-22.
[68] Song, G., Kelly, B., Agrawal, B.N., 2000. Active position control of a shape memory alloy wire actuated composite beam. Smart Mater. Struct., 9(5):711-716.
[69] Song, G., Chaudhry, V., Batur, C., 2003. Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller. Smart Mater. Struct., 12(1):223-231.
[70] Sreekumar, M., Nagarajan, T., Singaperumal, M., Zoppi, M., Molfino, R., 2006. Training of a fuzzy logic controller using table lookup scheme for the control of SMA actuators. Int. J. Mathematical Sciences, 5(2):335-353.
[71] Stevens, J.M., Buckner, G.D., 2005. Actuation and control strategies for miniature robotic surgical systems. Journal of Dynamic Systems, Measurement, and Control, 127(4):537-549.
[72] Sujan, V.A., Dubowsky, S., 2004. Design of a lightweight hyper-redundant deployable binary manipulator. Journal of Mechanical Design, 126(1):29-39.
[73] Tan, X., Baras, J.S., 2005. Adaptive identification and control of hysteresis in smart materials. IEEE Transactions on Automatic Control, 50(6):827-839.
[74] Tharayil, M.L., Alleyne, A.G., 2004. Modeling and control for smart mesoflap aeroelastic control. IEEE/ASME Transactions on Mechatronics, 9(1):30-39.
[75] Turner, T.L., 2001. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites. Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, SPIE 4326-24, Newport Beach, CA, p.208-219.
[76] van Humbeeck, J., 1999. Non-medical applications of shape memory alloys. Materials Science and Engineering A, 273-275(1-2):134-148.
[77] Webb, G.V., Lagoudas, D.C., Kurdila, A.J., 1998. Hysteresis modeling of SMA actuators for control applications. J. Intelligent Material Systems and Structures, 9(6):432-448.
[78] Wijst, M.W.M.V.D., Schreurs, P.J.G., Veldpaus, F.E., 1997. Application of computed phase transformation power to control shape memory alloy actuators. Smart Mater. Struct., 6(2):190-198.
[79] Yao, Q., Jin, S., Ma, P.S., 2004. The micro trolley based on SMA and its control system. Journal of Intelligent and Robotic Systems, 39(2):199-208.
[80] Yesin, K.B., 2000. Design of Meso-Scale Robotic Systems with Miniature Actuators. University of Minnesota, Technical Report.
Open peer comments: Debate/Discuss/Question/Opinion
<1>