CLC number: R683
On-line Access:
Received: 2007-02-10
Revision Accepted: 2007-06-23
Crosschecked: 0000-00-00
Cited: 8
Clicked: 5476
AKRAMIN M.R.M., ALSHOAIBI Abdulnaser, HADI M.S.A., ARIFFIN A.K., MOHAMED N.A.N.. Probabilistic analysis of linear elastic cracked structures[J]. Journal of Zhejiang University Science A, 2007, 8(11): 1795-1799.
@article{title="Probabilistic analysis of linear elastic cracked structures",
author="AKRAMIN M.R.M., ALSHOAIBI Abdulnaser, HADI M.S.A., ARIFFIN A.K., MOHAMED N.A.N.",
journal="Journal of Zhejiang University Science A",
volume="8",
number="11",
pages="1795-1799",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1795"
}
%0 Journal Article
%T Probabilistic analysis of linear elastic cracked structures
%A AKRAMIN M.R.M.
%A ALSHOAIBI Abdulnaser
%A HADI M.S.A.
%A ARIFFIN A.K.
%A MOHAMED N.A.N.
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 11
%P 1795-1799
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1795
TY - JOUR
T1 - Probabilistic analysis of linear elastic cracked structures
A1 - AKRAMIN M.R.M.
A1 - ALSHOAIBI Abdulnaser
A1 - HADI M.S.A.
A1 - ARIFFIN A.K.
A1 - MOHAMED N.A.N.
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 11
SP - 1795
EP - 1799
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1795
Abstract: This paper presents a probabilistic methodology for linear fracture mechanics analysis of cracked structures. The main focus is on probabilistic aspect related to the nature of crack in material. The methodology involves finite element analysis; statistical models for uncertainty in material properties, crack size, fracture toughness and loads; and standard reliability methods for evaluating probabilistic characteristics of linear elastic fracture parameter. The uncertainty in the crack size can have a significant effect on the probability of failure, particularly when the crack size has a large coefficient of variation. Numerical example is presented to show that probabilistic methodology based on Monte Carlo simulation provides accurate estimates of failure probability for use in linear elastic fracture mechanics.
[1] Alshoaibi, A.M., Hadi, M.S.A., Ariffin, A.K., 2007. An adaptive finite element procedure for crack propagation analysis. Journal of Zhejiang University SCIENCE A, 8(2):228-236.
[2] Besterfield, G.H., Lawrence, M.A., Belytschko, T., 1990. Brittle fracture reliability by probabilistic finite elements. ASCE J. Eng. Mech., 116(3):642-659.
[3] Chen, G., Rahman, S., Park, Y.H., 2001. Shape sensitivity and reliability analyses of linear-elastic cracked structures. International Journal of Fracture, 112(3):223-246.
[4] Grigoriu, M., Saif, M.T.A., El-Borgi, S., Ingraffea, A., 1990. Mixed mode fracture initiation and trajectory prediction under random stresses. International Journal of Fracture, 45(1):19-34.
[5] Guinea, G.V., Planan, J., Elices, M., 2000. KI evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics, 66(3):243-255.
[6] Madsen, H.O., Krenk, S., Lind, N.C., 1986. Methods of Structural Safety. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
[7] Provan, J.W., 1987. Probabilistic Fracture Mechanics and Reliability. Martinus Nijhoff Publishers, Dordrecht, the Netherlands.
[8] Rahman, S., 2001. Probabilistic fracture mechanics: J-estimation and finite element methods. Engineering Fracture Mechanics, 68(1):107-125.
[9] Rahman, S., Kim, J.S., 2001. Probabilistic fracture mechanics for nonlinear structures. International Journal of Pressure Vessels and Piping, 78(4):261-269.
[10] Soong, T.T., 2004. Fundamentals of Probability and Statistics for Engineers. John Wiley & Sons, West Sussex.
[11] Tada, H., Paris, P.C., Irwin, G.R., 2000. The Stress Analysis of Cracks (Handbook). ASME Press, New York.
[12] Zienkiewicz, O.C., Zhu, J.Z., 1987. A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods In Engineering, 241:237-357.
[13] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., 2005. The Finite Element Method: Its Basis and Fundamentals (6th Ed.). Elsevier Butterworth-Heinemann.
Open peer comments: Debate/Discuss/Question/Opinion
<1>