Full Text:   <1980>

CLC number: X53

On-line Access: 

Received: 2006-03-16

Revision Accepted: 2006-07-31

Crosschecked: 0000-00-00

Cited: 114

Clicked: 4264

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2007 Vol.8 No.3 P.192~207

http://doi.org/10.1631/jzus.2007.B0192


Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils


Author(s):  JING Yan-de, HE Zhen-li, YANG Xiao-e

Affiliation(s):  Ministry of Education Key Lab of Environment, Remediation and Ecosystem Health, School of Natural Resource and Environment Science, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   jingyande@163.com, zhe@mail.ifas.ufl.edu

Key Words:  Rhizobacteria, Phytoremediation, Heavy metals, Rhizosphere


JING Yan-de, HE Zhen-li, YANG Xiao-e. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University Science B, 2007, 8(3): 192~207.

@article{title="Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils",
author="JING Yan-de, HE Zhen-li, YANG Xiao-e",
journal="Journal of Zhejiang University Science B",
volume="8",
number="3",
pages="192~207",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.B0192"
}

%0 Journal Article
%T Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils
%A JING Yan-de
%A HE Zhen-li
%A YANG Xiao-e
%J Journal of Zhejiang University SCIENCE B
%V 8
%N 3
%P 192~207
%@ 1673-1581
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.B0192

TY - JOUR
T1 - Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils
A1 - JING Yan-de
A1 - HE Zhen-li
A1 - YANG Xiao-e
J0 - Journal of Zhejiang University Science B
VL - 8
IS - 3
SP - 192
EP - 207
%@ 1673-1581
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.B0192


Abstract: 
Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Abou-Shanab, R.A., Angle, J.S., Delorme, T.A., Chaney, R.L., van Berkum, P., Moawad, H., Ghanem, K., Ghozlan, H.A., 2003a. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. N. Phytol., 158(1):219-224.

[2] Abou-Shanab, R.A., Delorme, T.A., Angle, J.S., Chaney, R.L., Ghanem, K., Moawad, H., Ghozlan, H.A., 2003b. Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int. J. Phytoremediation, 5(4):367-379.

[3] Abou-Shanab, R.A., Ghozlan, H., Ghanem, K., Moawad, H., 2005. Behaviour of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World J. Microbiol. Biotechnol., 21(6-7):1095-1101.

[4] Aleem, A., Isar, J., Malik, A., 2003. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour. Technol., 86(1):7-13.

[5] Alkorta, I., Garbisu, C., 2001. Phytoremediation of organic contaminants. Bioresour. Technol., 79(3):273-276.

[6] Alstrom, S., 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl. Microbiol., 37(6):495-501.

[7] Anderson, T.A., Guthrie, E.A., Walton, B.T., 1993. Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ. Sci. Technol., 27(13):2630-2636.

[8] Barber, S.A., Lee, R.B., 1974. The effect of microorganisms on the absorption of manganese by plants. N. Phytol., 73(1):97-106.

[9] Bar-Ness, E., Chen, Y., Hadar, Y., Marchner, H., Romheld, V., 1991. Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil, 130(1-2):231-241.

[10] Bar-Ness, E., Hadar, Y., Chen, Y., Shanzer, A., Libman, J., 1992. Iron uptake by plant from microbial siderophores. Plant Physiol., 99(4):1329-1335.

[11] Belimov, A.A., Kunakova, A.M., Gruzdeva, E.V., 1998. Influence of soil pH on the interaction of associative bacteria with barley. Microbiology (Moscow), 67(4):463-469.

[12] Belimov, A.A., Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., Borisov, A.Y., Tikhonovich, I.A., Kluge, C., Preisfeld, A., et al., 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol., 47(7):642-652.

[13] Belimov, A.A., Safronova, V.I., Mimura, T., 2002. Response of spring rape to inoculation with plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol., 48(3):189-199.

[14] Belimov, A.A., Kunakova, A.M., Safronova, V.I., Stepanok, V.V., Yudkin, L.Y., Alekseev, Y.V., Kozhemyakov, A.P., 2004. Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology (Moscow), 73(1):99-106.

[15] Belimov, A.A., Hontzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., Glick, B.R., 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 37(2):241-250.

[16] Bewley, J.D., Black, M., 1985. Dormancy and the Control of Germination, Seeds: Physiology of Development and Germination. Plenum Press, New York, p.175-235.

[17] Bingham, F.T., Pereyea, F.J., Jarrell, W.M., 1986. Metal toxicity to agricultural crops. Metal Ions Biol. Syst., 20:119-156.

[18] Blake, R.C., Choate, D.M., Bardhan, S., Revis, N., Barton, L.L., Zocco, T.G., 1993. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem., 12(5):1365-1376.

[19] Bogardt, A.H., Hemmingsen, B.B., 1992. Enumeration of phenanthracene-degrading bacteria by an overlayer technique and its use in the evaluation of petroleum-contaminated sites. Appl. Environ. Microbiol., 58(7):2579-2582.

[20] Bollard, E.G., 1983. Involvement of Unusual Elements in Plant Growth and Nutrition. In: Lauchli, A., Bielsky, R.L. (Eds.), Inorganic Plant Nutrition. Encyclopedia of Plant Physiology, Vol. 15B. Springer-Verlag KG, Berlin, Germany, p.695-744.

[21] Borowitz, J.J., Stankie-Dicz, M., Lewicka, T., Zukowska, Z., 1992. Inhibition of fungal cellulase, pectinase and xylanase activity of plant growth promoting fluorescent pseudomonads. Bull. OILB/SROP, 15(4):103-106.

[22] Bradley, R., Burt, A.J., Read, D.J., 1982. The biology of mycorrhyza in the Ericaceae. VIII. The role of mycorrhyzal infection in heavy metal resistance. N. Phytol., 91(2):197-202.

[23] Brookes, P.C., McGrath, S.P., 1984. Effects of metal toxicity on the size of the soil microbial biomass. Eur. J. Soil Sci., 35(2):341-346.

[24] Brown, M.T., Wilkins, D.A., 1985. Zinc tolerance of mycorrhyial Betula. N. Phytol., 99(1):101-106.

[25] Budzikiewicz, H., 1997. Siderophores of fluorescent Pseudomonas L. Nat. Foresche, 52C:413-420.

[26] Burd, G.I., Dixon, D.G., Glick, B.R., 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol., 64(3):3663-3668.

[27] Burd, G.I., Dixon, D.G., Glick, B.R., 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46(3):237-245.

[28] Chander, K., Brookes, P.C., 1991. Effects of heavy metals from past applications of sewage sluge on microbial biomass and organic matter accumulaiton in a sandy loam soil and silty loam UK soil. Soil Biol. Biochem., 23(10):927-932.

[29] Chaney, R.L., Brown, S.L., Li, Y.M., Angle, J.S., Stuczynski, T.I., Daniel, W.L., Henry, C.L., Siebelec, G., Malik, M., Ryan, J.A., et al., 2000. Progress in Risk Assessment for Soil Metals, and In-situ Remediation and Phytoextraction of Metals from Hazardous Contaminated Soils. US-EPA “Phytoremediation: State of Science”, 2000 May 1-2, Boston, MA.

[30] Chaudri, A.M., McGrath, S.P., Giller, K.E., 1992. Survival of the indigenous population of Rhizobium leguminosarum biovar trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biol. Biochem., 24(7):625-632.

[31] Cheng, S., Grosse, W., Karrenbrock, F., Thoennessen, M., 2002. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol. Eng., 18(3):317-325.

[32] Claverys, J.P., 2001. A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol., 152(3-4):231-243.

[33] Crowley, D.E., Wang, Y.C., Reid, C.P.P., Szansiszlo, P.J., 1991. Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant Soil, 130(1-2):179-198.

[34] Cunningham, S.D., Berti, W.R., 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol., 29(4):207-212.

[35] Cunningham, S.D., Ow, D.W., 1996. Promises and prospects of phytoremediation. Plant. Physiol., 110(5):715-719.

[36] Cunningham, S.D., Berti, W.R., Huang, J.W., 1995. Phytoremediation of contaminated soils. Trends Biotechnol., 13(9):393-397.

[37] Davies, F.T.Jr, Puryear, J.D., Newton, R.J., 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol., 158(6):777-786.

[38] de Souza, M.P., Chu, D., Zhao, M., Zayed, A.M., Ruzin, S.E., Schichnes, D., Terry, N., 1999a. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol., 119(2):565-573.

[39] de Souza, M.P., Huang, C.P., Chee, N., Terry, N., 1999b. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta, 209(2):259-263.

[40] Défago, G., Berling, C.H., Burger, U., Hass, D., Kahr, G., Keel, C., Voisard, C., Wirthner, P., Wuthrich, B., 1990. Suppression of Black Root Rot of Tobacco and Other Root Diseases by Strains of Pseudomonas fluorescens: Potential Applications and Mechanisms. In: Hornby, D. (Ed.), Biological Control of Soilborne Plant Pathogens. CAB International, Wellingford, Oxon, UK, p.93-108.

[41] Dell’Amico, E., Cavalca, L., Andreoni, V., 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol., 52(2):153-162.

[42] Delorme, T.A., Gagliardi, J.V., Angle, J.S., Chaney, R.L., 2001. Influence of the zinc hyperaccumulator Thalaspi caerulescens J. and C. Presl and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol., 47(8):773-776.

[43] Dueck, T.A., Visser, P., Ernest, W.H.O., Schat, H., 1986. Vesiculararbuscular mycorrhyzae decrease zinc toxicity to grasses in zinc polluted soil. Soil Biol. Biochem., 18(3):331-333.

[44] Duffy, B.K., Défago, G., 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phyotpathology, 87(12):1250-1257.

[45] Duffy, B.K., Défago, G., 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol., 65(6):2429-2438.

[46] Egamberdiyeva, D., Höflich, G., 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ., 56(2):293-301.

[47] Elad, Y., Baker, R., 1985. The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium oxysporum. Phytopathology, 75:190-195.

[48] Elad, Y., Chet, I., 1987. Possible role of competition for nutrition in biocontrol of Pythium damping-off by bacteria. Phytopathology, 77:190-195.

[49] Ellis, R.J., Timms-Wilson, T.M., Bailey, M.J., 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol., 2(3):274-284.

[50] Elsgaard, L., Petersen, S.O., Debosz, K., 2001. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ. Toxicol Chem., 20(8):1656-1663.

[51] Ernst, W.H.O., 1996. Bioavailability of heavy metals and decontamination of soils by plants. Appl. Geochem., 11(1-2):163-167.

[52] Filip, Z., 2002. International approach to assessing soil quality by ecologically-related biological parameters. Agric. Ecosyst. Environ., 88(2):689-712.

[53] Foy, C.D., Chaney, R.L., White, M.C., 1978. The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol., 29(1):511-566.

[54] Fridlender, M., Inbar, J., Chet, I., 1993. Biological control of soilborne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol. Biochem., 25(9):1211-1221.

[55] Gadd, G.M., 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8):834-840.

[56] Garbisu, C., Alkorta, I., 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol., 77(3):229-236.

[57] Garbisu, C., Hernandez-Allica, J., Barrutia, O., Alkorta, I., Becerril, J.M., 2002. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health, 17(3):173-188.

[58] Giller, K.E., Witter, E., McGrath, S.P., 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol. Biochem., 30(10-11):1389-1414.

[59] Glick, B.R., 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41:109-117.

[60] Glick, B.R., 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv., 21(5):383-393.

[61] Glick, B.R., Jacobson, C.B., Schwarze, M.M.K., Pasternak, J.J., 1994. 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhyzobacterium Pseudomonas putida GR 12-2 do not stimulate canola root elongation. Can. J. Microbiol., 40(2):911-915.

[62] Glick, B.R., Karaturovic, D.M., Newell, P.C., 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol., 41(6):533-536.

[63] Glick, B.R., Penrose, D.M., Li, J.P., 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190(1):63-68.

[64] Glick, B.R., Patten, C.L., Holguin, G., Penrose, D.M., 1999. Biochemical and Genetic Mechanisms Used by Plant Growth-Promoting Bacteria. Imperial College Press, London.

[65] Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1998. Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time. Aust. J. Soil Res., 36(2):199-216.

[66] Gremion, F., Chatzinotas, A., Kaufmann, K., von Sigler, W., Harms, H., 2004. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol. Ecol., 48(2):273-283.

[67] Grichko, V.P., Glick, B.R., 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem., 39(1):11-17.

[68] Hall, J.A., Peirson, D., Ghosh, S., Glick, B.R., 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci., 44(2):37-42.

[69] Han, J.G., Sun, L., Dong, X.Z., Cai, Z.Q., Sun, X.L., Yang, H.L., Wang, Y.S., Song, W., 2005. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol., 28(1):66-76.

[70] Hasnain, S., Sabri, A.N., 1996. Growth Stimulation of Triticum Aestivum Seedlings under Cr-Stresses by Non Rhizospheric Pseudomonad Strains. Abstracts of the 7th International Symposium on Biological Nitrogen Fixation with Non-Legumes. Kluwer Academic Publishers, the Netherlands, p.36.

[71] Heggo, A., Angle, J.S., Chaney, R.L., 1990. Effect of vesicular-arbuscular mycorrhyzae fungi on heavy metal uptake by soybeans. Soil Biol. Biochem., 22(6):865-869.

[72] Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizospere as affected by root-induced chemical changes: a review. Plant Soil, 237(2):173-195.

[73] Huang, Y., Tao, S., Chen, Y.J., 2005. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J. Environ. Sci., 17(2):276-280 (in Chinese).

[74] Imsande, J., 1998. Iron, sulfur, and chlorophy II deficiencies: a need for an integrative approach in plant physiology. Physiologia Plantarum, 103(1):139-144.

[75] Jacobson, C.B., Pasternak, J.J., Glick, B.R., 1994. Partial purification and characterization of the enzyme ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol., 40(2):1019-1025.

[76] Jordan, M.J., LeChevalier, M.P., 1975. Effects of zinc-smelter emissions on forest soil microflora. Can. J. Microbiol., 21:1855-1865.

[77] Kabata-Pendias, A., Pendias, H., 1989. Trace Elements in the Soil and Plants. CRC Press, Boca Raton, FL.

[78] Kamnev, A.A., 2003. Phytoremediation of Heavy Metals: An Overview. In: Fingerman, M., Nagabhushanam, R. (Eds.), Recent Advances in Marine Biotechnology, Vol. 8: Bioremediation. Science Publishers Inc., Enfield (NH), USA, p.269-317.

[79] Kamnev, A.A., Tugarova, A.V., Antonyuk, L.P., Tarantilis, P.A., Polissiou, M.G., Gardiner, P.H., 2005. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J. Trace Elem. Med. Biol., 19(1):91-95.

[80] Kanazawa, K., Higuchi, K., Nishizawa, N.K., Fushiya, S., Chino, M., Mori, S., 1994. Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretion under Fe-deficient conditions, in Gramineae. J. Exp. Bot., 45(12):1903-1906.

[81] Kärenlampi, S., Schat, H., Vangronsveld, J., Verkleij, J.A.C., van der Lelie, D., Mergeay, M., Tervahauta, A.I., 2000. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut., 107(2):225-231.

[82] Killham, K., Firestone, M.K., 1983. Vesicular arbuscular mycorrhyzal mediation of grass response to acidic and heavy metal deposition. Plant Soil, 72(1):39-48.

[83] Kloepper, J.W., Schroth, M.N., Miller, T.D., 1980. Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield. Phytopathology, 70:1078-1082.

[84] Kloepper, J.W., Lifshitz, R., Zablotowicz, R.M., 1989. Free-living bacterial inocula for enhancing crop productivity. Trends. Biotechnol., 7(2):39-44.

[85] Konopka, A., Zakharova, T., Bischoff, M., Oliver, L., Nakatsu, C., Turco, R.F., 1999. Microbial biomass and activity in lead-contaminated soil. Appl. Environ. Microbiol., 65(5):2256-2259.

[86] Kumar, P.B.A., Dushenkov, V., Motto, H., Raskin, I., 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol., 29(5):1232-1238.

[87] Lambrecht, M., Okon, Y., Vande Broek, A., Vanderleyden, J., 2000. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol., 8(7):298-300.

[88] Lasat, H.A., 2002. Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual., 31(1):109-120.

[89] Leggett, J.E., Epstein, E., 1956. Kinetics of sulfate adsorption by barley roots. Plant Physiol., 31:222-226.

[90] Lemanceau, P., Bakker, P.A.H.M., Dekogel, W.J., Alabouvette, C., Schippers, B., 1992. Effect of pseudobactin 358 produced by Pseudomonas putida WSC358 on suppression of Fusarium wilt of carnations by non pathogenic Fusarium oxysporum. Appl. Environ. Microbiol., 58(3):2978-2980.

[91] Leong, J., 1986. Siderophores: their biochemistry and possible role in control of plant pathogens. Annu. Rev. Phytopathol., 24(1):187-209.

[92] Lim, H., Kim, Y., Kim, S., 1991. Pseudomonas stutzeri YLP-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol., 57(2):510-516.

[93] Liu, A., Hamel, C., Hamilton, R.I., Ma, B.L., Smith, D.L., 2000. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza, 9(6):331-336.

[94] Lonergan, D.J., Jenter, H., Coates, J.D., Phillips, E.J.P., Schmidt, T., Lovley, D.R., 1996. Phylogenetic analysis of dissimilatory Fe(lll)-reducing bacteria. J. Bacterial., 176(3):2402-2408.

[95] Loper, J.E., Henkels, M.D., 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in rhizosphere. Appl. Environ. Microbiol., 65(12):5357-5363.

[96] Lovley, D.R., 1993. Dissimilatory metal reduction. Annu. Rev. Microbial., 47(1):263-290.

[97] Lovley, D.R., 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol., 14(2):85-93.

[98] Lovley, D.R., Coates, J.D., Saffarini, D.A., Lonergan, D.J., 1997. Dissimilatory Iron Reduction. In: Winkelman, G., Carrano, C.J. (Eds.), Iron and Related Transition Metals in Microbial Metabolism. Harwood Academic Publishers, New York.

[99] Ma, J.F., Nomoto, K., 1993. Inhibition of mugineic acid-ferric complex in barley by copper, zinc and cobalt. Physiologia Plantarum, 89(2):331-334.

[100] Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press, London, p.889.

[101] Masalha, J., Kosegarten, H., Elmaci, O., Mengal, K., 2000. The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils, 30(5-6):433-439.

[102] Mason, R.P., Reinfelder, J.R., Morel, F.M.M., 1996. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol., 30(6):1835-1845.

[103] Maurhofer, M., Reimmann, C., Sacherer, S.P., Heeb, S., Haas, D., Defago, G., 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology, 88(2):678-684.

[104] Mayak, S., Tirosh, T., Glick, B.R., 1999. Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J. Plant Growth Regul., 18(2):49-53.

[105] Mayak, S., Tirosh, T., Glick, B.R., 2004a. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci., 166(2):525-530.

[106] Mayak, S., Tirosh, T., Glick, B.R., 2004b. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem., 42(6):565-572.

[107] Mayer, A.M., Poljakoff-Mayber, A., 1989. The Germination of Seeds. Pergamon Press, Oxford.

[108] McGrath, S.P., 1994. Effects of Heavy Metals from Sewage Sludge on Soil Microbes in Agricultural Ecosystems. In: Ross, S.M. (Ed.), Toxic Metals in Soil-Plant Systems. Wiley, New York, p.247-273.

[109] McGrath, S.P., Chaudri, A.M., Giller, K.E., 1995. Long-term effects of metals in sewage sluge on soils, microorganisms and plants. J. Ind. Microbiol., 14(2):94-104.

[110] McGrath, S.P., Zhao, F.J., Lombi, E., 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil, 232(1-2):207-214.

[111] Mengoni, A., Barzanti, R., Gonnelli, C., Gabbrielli, R., Bazzicalupo, M., 2001. Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ. Microbiol., 3(11):691-698.

[112] Meyer, J.M., 2000. Pyoverdines: pigments siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol., 174(3):135-142.

[113] Mishra, D., Kar, M., 1974. Nickel in plant growth and metabolism. Bot. Rev., 40:395-452.

[114] Nie, L., Shan, S., Rashid, A., Burd, G.I., George, D.D., Glich, B.R., 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol. Biochem., 40(4):355-361.

[115] Oostendorp, M., Sikora, R.A., 1989. Seed-treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev. Nematol., 12(1):77-83.

[116] Oostendorp, M., Sikora, R.A., 1990. In vitro interrelationship between rhizosphere bacteria and Heterodera schachtii. Rev. Nematol., 13(3):269-274.

[117] Pan, B., Bai, Y.M., Leibovitch, S., Smith, D.L., 1999. Plant-growth-promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a short-growing-season area. Eur. J. Agron., 11(3-4):179-186.

[118] Park, C.H., Keyhan, M., Matin, A., 1999. Purification and characterization of chromate reductase in Pseudomonas putida. Abs. Gen. Meet. American Soc. Microbial., 99(4):536-548.

[119] Patten, C.I., Glick, B.R., 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol., 42(3):207-220.

[120] Patten, C.L., Glick, B.R., 2002. The role of bacterial indoleacetic acid in the development of the host plant root system. Appl. Environ. Microbiol., 68(8):3795-3801.

[121] Penrose, D.M., Glick, B.R., 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol., 47(4):368-372.

[122] Pierson, L.S., Thomashow, L.S., 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens. Mol. Plant-Microb. Interact., 5(4):330-339.

[123] Potgieter, H., Alexander, M., 1996. Susceptibility and resistance of several fungi to microbial lysis. J. Bacteriol., 91(4):1526-1532.

[124] Probanza, A., Lucas García, J.A., Ruiz Palomino, M., Ramos, B., Gutiérrez Mañero, F.J., 2002. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl. Soil Ecol., 20(2):75-84.

[125] Ramos, B., Lucas García, J.A., Probanza, A., Barrientos, M.L., Gutiérrez Mañero, F.J., 2003. Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environ. Exp. Bot., 49(1):61-68.

[126] Reid, C.P., Szaniszlo, P.J., Crowley, D.E., 1986. Siderophore Involvement in Plant Iron Nutrition. In: Swinburne, T.R. (Ed.), Iron Siderophores and Plant Diseases. Plenum Press, New York, p.29-42.

[127] Römheld, V., Marschner, H., 1986. Mobilization of iron in the rhizosphere of different plant species. Adv. Plant Nutr., 2:155-204.

[128] Sabry, S.A., Ghozlan, H.A., Abou-Zeid, D.M., 1997. Metal tolerance and antobiotic resistance patterns of a bacterial population isolated from sea water. J. Appl. Microbiol., 82(2):245-252.

[129] Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., Raskin, I., 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biol. Technol., 13(5):468-474.

[130] Sandaa, R.A., Torsvik, V., Enger, O., Daae, L.F., Castberg, T., Hahn, D., 1999. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol. Ecol., 30(3):237-251.

[131] Sanità di Toppi, L., Gabrielli, R., 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41(2):105-130.

[132] Saxena, P.K., Krishnaraj, S., Dan, T., Perras, M.R., Vettaakkorumakankav, N.N., 1999. Phytoremediation of Heavy Metal Contaminated and Polluted Soils. In: Prasad, M.N.V., Hagemeyer, J. (Eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Springer, Berlin, p.305-329.

[133] Sharma, A., Johri, B.N., Sharma, A.K., Glick, B.R., 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem., 35(7):887-894.

[134] Sikora, R.A., 1992. Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol., 30(1):245-270.

[135] Sikora, R.A., Hoffmann-Hergarten, S., 1992. Importance of plant health-promoting rhizobacteria for the control of soil-borne fungal diseases and plant parasitic nematodes. Arab. J. Plant Prot., 10(4):53-58.

[136] Sitaula, B.K., Almas, A., Bakken, L.R., Singh, B.R., 1999. Assessment of heavy metals associated with bacteria in soil. Soil Biol. Biochem., 31(2):315-316.

[137] Smalle, J., van der Straeten, J.D., 1997. Ethylene and vegetative development. Physiologia Plantarum, 100(3):593-605.

[138] Smith, S.E., Read, D.J., 1997. Mycorrhizal Symbiosis. Academic Press Inc., San Diego.

[139] Steenhoudt, O., Vanderleyden, J., 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev., 24(4):487-506.

[140] Tam, P.C.F., 1995. Heavy metal tolerance by ectomycorrhyzal fungi and metal amelioration by Pisolithus tinctorium. Mycorrhiza, 5(3):181-187.

[141] van Loon, L.C., 1984. Regulation of Pathogenesis and Symptom Expression in Diseased Plants by Ethylene. In: Fuchs, Y., Chalutz, E. (Eds.), Ethylene: Biochemical, Physiological and Applied Aspects. Martinus Nijhoff/Dr. W. Junk, the Hague, the Netherlands, p.171-180.

[142] Velazhahan, R., Samiyappan, R., Vidhyasekaran, P., 1999. Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzyme. J. Plant Dis. Prot., 106(3):244-250.

[143] Vidhyasekaran, P., Muthamilan, M., 1999. Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci. Technol., 9(1):67-74.

[144] Viswanathan, R., Samiyappan, R., 1999. Induction of Systemic Resistance by Plant Growth Promoting Rhizobacteria against Red Rot Disease Caused by Collectotrichum falcatum Went in Sugarcane. In: Proceedings of the Sugar Technology Association of India, Vol. 61. Sugar Technology Association, New Delhi, India, p.24-39.

[145] Wallace, A., Wallace, G.A., Cha, J.W., 1992. Some modifications in trace elements toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents. The special case of iron. J. Plant. Nutr., 15(2):1589-1598.

[146] Wang, Y.T., Shen, H., 1995. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol., 14(2):159-163.

[147] Wang, Y., Brown, H.N., Crowley, D.E., Szaniszlo, P.J., 1993. Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environ., 16(5):579-585.

[148] Weber, O., Scholz, R.W., Bvhlmann, R., Grasmuck, D., 2001. Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Anal., 21(5):967-977.

[149] Wei, L., Kloepper, J.W., Tuzun, S., 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology, 81(11):1508-1512.

[150] Wei, L., Kloepper, J.W., Tuzun, S., 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology, 86(2):221-224.

[151] Wenzel, W.W., Lombi, E., Adriano, D.C., 1999. Biochemical Processes in the Rhizosphere: Role in Phytoremediation of Metal-Polluted Soils. In: Prasad, M.N.V., Hagemeyer, J. (Eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Springer, Berlin, p.273-303.

[152] Whiting, S.N., de Souza, M.P., Terry, N., 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ. Sci. Technol., 35(15):3144-3150.

[153] Xie, H., Pasternak, J.J., Glick, B.R., 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol., 32(2):67-71.

[154] Yang, X., Baligar, V.C., Martens, D.C., Clark, P.B., 1996. Plant tolerance to nickel toxicity. II. Nickel effect on influx and transport of mineral nutrients in four plant species. J. Plant Nutr., 19(2):265-279.

[155] Zayed, A.M., Lytle, C.M., Terry, N., 1998. Accumulation and volatilization of different chemical species of selenium by plants. Planta, 206(2):284-292.

[156] Zehnder, G., Kloepper, J., Yao, C., Wei, G., 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J. Econ. Entomol., 90(2):391-396.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

elham@ahmadi<ELI.GOLI2012@YAHOO.COM>

2013-06-23 01:12:36

MAGHALE ROLE Of soil rhizobacteria in phytoremediation of heavy metal contaminated soils BAZ NEMISHE.

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE