CLC number: TP212.3
On-line Access:
Received: 2007-11-04
Revision Accepted: 2008-02-21
Crosschecked: 0000-00-00
Cited: 2
Clicked: 6090
Jian WU, Zhi-yong XIAO, Yi-bin YING, Philip C.H. CHAN. Development of a miniature silicon wafer fuel cell using L-ascorbic acid as fuel[J]. Journal of Zhejiang University Science A, 2008, 9(7): 955-960.
@article{title="Development of a miniature silicon wafer fuel cell using L-ascorbic acid as fuel",
author="Jian WU, Zhi-yong XIAO, Yi-bin YING, Philip C.H. CHAN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="7",
pages="955-960",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720049"
}
%0 Journal Article
%T Development of a miniature silicon wafer fuel cell using L-ascorbic acid as fuel
%A Jian WU
%A Zhi-yong XIAO
%A Yi-bin YING
%A Philip C.H. CHAN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 7
%P 955-960
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720049
TY - JOUR
T1 - Development of a miniature silicon wafer fuel cell using L-ascorbic acid as fuel
A1 - Jian WU
A1 - Zhi-yong XIAO
A1 - Yi-bin YING
A1 - Philip C.H. CHAN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 7
SP - 955
EP - 960
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720049
Abstract: In the current studies a miniature silicon wafer fuel cell (FC) using l-ascorbic acid as fuel was developed. The cell employs l-ascorbic acid and air as reactants and a thin polymer electrolyte as a separator. Inductively coupled plasma (ICP) silicon etching was employed to fabricate high aspect-ratio columns on the silicon substrate to increase the surface area. A thin platinum layer deposited directly on the silicon surface by the sputtering was used as the catalyst layer for l-ascorbic acid electro-oxidation. Cyclic voltammetry shows that the oxidation of l-ascorbic acid on the sputtered platinum layer is irreversible and that the onset potentials for the oxidation of l-ascorbic acid are from 0.27 V to 0.35 V versus an Ag/AgCl reference electrode. It is found that at the room temperature, with 1 mol/L l-ascorbic acid/PBS (phosphate buffered solution) solution pumped to the anode at 1 ml/min flow rate and air spontaneously diffusing to the cathode as the oxidant, the maximum output power density of the cell was 1.95 mW/cm2 at a current density of 10 mA/cm2.
[1] Chan, S., Nguyen, N., Xia, Z., Wu, Z., 2005. Development of a polymeric micro fuel cell containing laser-micromachined flow channels. Journal Micromechanics Microengineering, 15(1):231-236.
[2] Fujiwara, N., Yasuda, K., Ioroi, T., Siroma, Z., Miyazaki, Y., Kobayashi, T., 2003. Direct polymer electrolyte fuel cells using L-ascorbic acid as a fuel. Electrochemical and Solid-State Letters, 6(12):A257-A259.
[3] Kelley, S.C., Deluga, G.A., Smyrl, W.H., 2002. Miniature fuel cells fabricated on silicon substrates. AIChE Journal, 48(5):1071-1082.
[4] Lu, G.Q., Wang, C.Y., Yen, T.J., Zhang, X., 2004. Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochimica Acta, 49(5):821-828.
[5] Mano, N., Mao, F., Heller, A., 2004. A miniature membrane-less biofuel cell operating at +0.60 V under physiological conditions. Chembiochem, 5:1703-1705.
[6] Ruiz, J.J., Aldaz, A., Dominguez, M., 1977. Mechanism of L-ascorbic acid oxidation and dehydro-L-ascorbic acid reduction on a mercury electrode. Canadian Journal Chemistry, 56:2799-2806.
[7] Seo, Y.H., Cho, Y.H., 1997. A Miniature Direct Methanol Fuel Cell Using Platinum Sputtered Microcolumn Electrodes with Limited Amount of Fuel. Proc. 16th IEEE Int. Conf. Micro Electro Mechanical Systems, Kyoto, Japan, p.375-378.
[8] Seo, Y.H., Cho, Y.H., 1998. MEMS-based Direct Methanol Fuel Cells and their Stacks Using a Common Electrolyte Sandwiched by Reinforced Microcolumn Electrodes. Proc. 17th IEEE Int. Conf. Micro Electro Mechanical Systems, Maastricht, The Netherlands, p.65-68.
[9] Yen, T.J., Fang, N., Zhang, X., Lu, G.Q., Wang, C.Y., 2003. A micro methanol fuel cell operating at near room temperature. Applied Physics Letters, 83(19):4056-4058.
[10] Yu, J., Cheng, P., Ma, Z., Yi, B., 2003a. Fabrication of a miniature silicon wafer fuel cells. Journal of Power Sources, 124(1):40-46.
[11] Yu, J., Cheng, P., Ma, Z., Yi, B., 2003b. Fabrication of a Miniature twin-fuel-cell on silicon wafer. Electrochimica Acta, 48(11):1537-1541.
Open peer comments: Debate/Discuss/Question/Opinion
<1>