Full Text:   <6919>

CLC number: TU312

On-line Access: 

Received: 2007-11-25

Revision Accepted: 2008-02-25

Crosschecked: 0000-00-00

Cited: 13

Clicked: 7102

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2008 Vol.9 No.9 P.1184-1192

http://doi.org/10.1631/jzus.A0720080


Analysis of structural response under blast loads using the coupled SPH-FEM approach


Author(s):  Jun-xiang XU, Xi-la LIU

Affiliation(s):  Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding email(s):   xujunx@msn.com

Key Words:  Smoothed particle hydrodynamics (SPH), Finite element method (FEM), Reinforced concrete structure, Explosion


Jun-xiang XU, Xi-la LIU. Analysis of structural response under blast loads using the coupled SPH-FEM approach[J]. Journal of Zhejiang University Science A, 2008, 9(9): 1184-1192.

@article{title="Analysis of structural response under blast loads using the coupled SPH-FEM approach",
author="Jun-xiang XU, Xi-la LIU",
journal="Journal of Zhejiang University Science A",
volume="9",
number="9",
pages="1184-1192",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0720080"
}

%0 Journal Article
%T Analysis of structural response under blast loads using the coupled SPH-FEM approach
%A Jun-xiang XU
%A Xi-la LIU
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 9
%P 1184-1192
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720080

TY - JOUR
T1 - Analysis of structural response under blast loads using the coupled SPH-FEM approach
A1 - Jun-xiang XU
A1 - Xi-la LIU
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 9
SP - 1184
EP - 1192
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720080


Abstract: 
A numerical model using the coupled smoothed particle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Century Dynamic Inc., 1998. Autodyn Theory Manual, San Ramon, California.

[2] de Vuyst, T., Vignjevic, R., Campbell, J.C., 2005. Coupling between meshless and finite element method. International Journal of Impact Engineering, 31(8):1054-1064.

[3] Drucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10(2):157-164.

[4] Du, Y.X., Liu, J.B., Wu, J., Du, X.L., 2006. Blast shock and vibration of underground structures with conventional weapon. Journal of Tsinghua University (Science and Technology), 46(3):322-326 (in Chinese).

[5] Gingold, R.A., Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Royal Astronomical Society, 181:375-389.

[6] Herrmann, W., 1969. Constitutive equation for the dynamic compaction of ductile porous material. Journal of Applied Physics, 40(6):2490-2499.

[7] Lee, E.L, Hornig, H.C., Kury, J.W., 1968. Adiabatic Expansion of High Explosive Detonation Products. Lawrence Radiation Laboratory, University of California.

[8] Liu, M.B., Liu, G.R., Lam, K.Y., Zong, Z., 2003. Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 30(2):106-118.

[9] Lu, X.Z., Jiang, J.J., 2001. Dynamic finite element simulation for the collapse of world trade center. China Civil Engineering Journal, 34(6):8-10 (in Chinese).

[10] Lu, Y., Wang, Z.Q., 2006. Characterization of structural effects from above-ground explosion using coupled numerical simulation. Computers and Structures, 84(28):1729-1742.

[11] Lu, Y., Wang, Z.Q., Chong, K., 2005. A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dynamics and Earthquake Engineering, 25(4):275-288.

[12] Luccioni, B.M., Ambrosini, R.D., Danesi, R.F., 2004. Analysis of building collapse under blast loads. Engineering Structures, 26(1):63-71.

[13] Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82:1013-1024.

[14] Riedel, W., Thoma, K., Hiermaier, S., 1999. Numerical Analysis Using a New Macroscopic Concrete Model for Hydrocodes. Proceedings of 9th International Symposium on Interaction of the Effects of Munitions with Structures, Berlin, p.315-322.

[15] Wang, Z.Q., Lu, Y., Hao, H., Chong, K., 2005. A full coupled numerical analysis approach for buried structures subjected to subsurface blast. Computers and Structures, 83(4-5):339-356.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE