CLC number: TH113; TH161
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2008-11-10
Cited: 7
Clicked: 6609
Zhong-xue LI, Wei SHEN, Gen-shu TONG, Jia-meng TIAN, Loc VU-QUOC. On the vein-stiffening membrane structure of a dragonfly hind wing[J]. Journal of Zhejiang University Science A, 2009, 10(1): 72-81.
@article{title="On the vein-stiffening membrane structure of a dragonfly hind wing",
author="Zhong-xue LI, Wei SHEN, Gen-shu TONG, Jia-meng TIAN, Loc VU-QUOC",
journal="Journal of Zhejiang University Science A",
volume="10",
number="1",
pages="72-81",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820211"
}
%0 Journal Article
%T On the vein-stiffening membrane structure of a dragonfly hind wing
%A Zhong-xue LI
%A Wei SHEN
%A Gen-shu TONG
%A Jia-meng TIAN
%A Loc VU-QUOC
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 1
%P 72-81
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820211
TY - JOUR
T1 - On the vein-stiffening membrane structure of a dragonfly hind wing
A1 - Zhong-xue LI
A1 - Wei SHEN
A1 - Gen-shu TONG
A1 - Jia-meng TIAN
A1 - Loc VU-QUOC
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 1
SP - 72
EP - 81
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820211
Abstract: Aiming at exploring the excellent structural performance of the vein-stiffening membrane structure of dragonfly hind wings, we analyzed two planar computational models and three 3D computational models with cambered corrugation based on the finite element method. It is shown that the vein size in different zones is proportional to the magnitude of the vein internal force when the wing structure is subjected to uniform out-of-plane transverse loading. The membrane contributes little to the flexural stiffness of the planar wing models, while exerting an immense impact upon the stiffness of the 3D wing models with cambered corrugation. If a lumped mass of 10% of the wing is fixed on the leading edge close to the wing tip, the wing fundamental frequency decreases by 10.7%~13.2%; if a lumped mass is connected to the wing via multiple springs, the wing fundamental frequency decreases by 16.0%~18.0%. Such decrease in fundamental frequency explains the special function of the wing pterostigma in alleviating the wing quivering effect. These particular features of dragonfly wings can be mimicked in the design of new-style reticulately stiffening thin-walled roof systems and flapping wings in novel intelligent aerial vehicles.
[1] Ahmad, S., Irons, B.M., Zienkiewicz, O.C., 1970. Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering, 2(3):419-451.
[2] Bradshaw, R., Campbell, D., Gargari, M., Mirmiran, A., Tripeny, P., 2002. Special structures: past, present, and future. Journal of Structural Engineering ASCE, 128(6):691-709.
[3] Combes, S.A., Daniel, T.L., 2003a. Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17):2979-2987.
[4] Combes, S.A., Daniel, T.L., 2003b. Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology, 206(17):2989-2997.
[5] Cook, R.D., 1981. Concepts and Applications of Finite Element Analysis. John Wiley & Sons, New York.
[6] Dillmann, R., Albiez, J., Gamann, B., Kerscher, T., 2005. Biologically Motivated Control of Walking Machines. In: Armada, M.A., Santos, P.G. (Eds.), Climbing and Walking Robots, Springer, Berlin, Heidelberg, p.55-69.
[7] Dudley, R., 2000. The Biomechanics of Insect Flight: Form, Function Evolution. Princeton University Press, Princeton.
[8] Ellington, C.P., 1999. The novel aerodynamics of insect flight: applications to micro-air vehicles. Journal of Experimental Biology, 202(23):3439-3448.
[9] Feng, P., Ye, L.P., Teng, J.G., 2007. Large-span woven web structure made of fiber-reinforced polymer. Journal of Composites for Construction, 11(2):110-119.
[10] Fest, E., Shea, K., Domer, B., Smith, I.F.C., 2003. Adjustable tensegrity structures. Journal of Structural Engineering ASCE, 129(4):515-526.
[11] Holgate, A., 1990. Aesthetics of thin-walled structures. Thin-Walled Structures, 9(1-4):437-457.
[12] Ibrahimbegovic, A., 1995. On finite element implementation of geometrically nonlinear reissner’s beam theory: three-dimensional curved beam elements. Computer Methods in Applied Mechanics and Engineering, 122(1-2):11-26.
[13] Isler, H., 1986. Concrete shells and architecture. Bulletin of the International Association for Shell and Spatial Structures, 27(2):39-42.
[14] Izzuddin, B.A., 2005. An enhanced co-rotational approach for large displacement analysis of plates. International Journal for Numerical Methods in Engineering, 64(10):1350-1374.
[15] Kawaguchi, M., Tatemichi, I., Chen, P.S., 1999. Optimum shapes of a cable dome structure. Engineering Structures, 21(8):719-725.
[16] Kesel, A.B., Philippi, U., Nachtigall, W., 1998. Biomechanical aspects of the insect wing: an analysis using the finite element method. Computers in Biology and Medicine, 28(4):423-437.
[17] Li, Z.X., 2007a. A mixed co-rotational formulation of 2D beam element using vectorial rotational variables. Communications in Numerical Methods in Engineering, 23(1):45-69.
[18] Li, Z.X., 2007b. A co-rotational formulation for 3D beam element using vectorial rotational variables. Computational Mechanics, 39(3):309-322.
[19] Li, Z.X., Zheng, Y., 2005. Studies on the Flexible Wings of an Intelligent Aerocraft. In: Zhang, G.T., Xing, Q.H. (Eds.), Proceeding of the 1st Annual Academic Conference of Chinese Society of Astronautics. Astronautic Publishing House, Beihai, China, p.730-733 (in Chinese).
[20] Li, Z.X., Vu-Quoc, L., 2007. An efficient co-rotational formulation for curved triangular shell element. International Journal for Numerical Methods in Engineering, 72(9):1029-1062.
[21] Li, Z.X., Izzuddin, B.A., Vu-Quoc, L., 2008. A 9-node co-rotational quadrilateral shell element. Computational Mechanics, 42(6):873-884.
[22] Liddell, W.I., Miller, P.W., 1999. Design and construction of the millennium dome. Structural Engineering International, 9(3):172-175.
[23] Mcrobie, F.A., Lasenby, J., 1999. Simo-Vu Quoc rods using clifford algebra. International Journal for Numerical Methods in Engineering, 45(4):377-398.
[24] Norberg, R.A., 1972. The pterostigma of insect wings an inertial regulator of wing pitch. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 81(1):9-22.
[25] Norberg, U.M.L., 2002. Structure, form, and function of flight in engineering and the living world. Journal of Morphology, 252(1):52-81.
[26] Okamoto, M., Yasuda, K., Azuma, A., 1996. Aerodynamic characteristics of the wings and body of a dragonfly. Journal of Experimental Biology, 199(2):281-294.
[27] Schlaich, J., Bergermann, R., Sobek, W., 1994. Air-inflated roof over the Roman amphitheatre at Nimes. Structural Engineering Review, 6(3-4):203-214.
[28] Shapiro, J., 1955. Principles of Helicopter Engineering. Temple Press, London, p.365.
[29] Shen, W., 2006. Studies on New-style Reticulately Stiffening Thin-walled Cantilever by Bionic Modeling of Dragonfly Wings. MS Thesis, Zhejiang University, Hangzhou, p.53-76 (in Chinese).
[30] Shyy, W., Berg, M., Ljungqvist, D., 1999. Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35(5):455-505.
[31] Simo, J.C., Vu-Quoc, L., 1986. A three-dimensional finite-strain rod model. Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering, 58(1):79-116.
[32] Somervill, B.A., 2005. The History of the Airplane. The Child’s World Inc. Chanhassen, Minnesota.
[33] Sudo, S., Tsuyuki, K., Tani, J., 2000. Wing morphology of some insects. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 43(4):895-900.
[34] Sun, Z.J., Zhang, Q.L., 2005. A study on pre-tension measurement of membrane structures. International Journal of Space Structures, 20(2):71-82.
[35] Sunada, S., Zeng, L.J., Kawachi, K., 1998. The relationship between dragonfly wing structure and torsional deformation. Journal of Theoretical Biology, 193(1):39-45.
[36] Tang, C.Y., Tan, K.H., 2004. An interactive mechanical model for shear strength of deep beams. Journal of Structural Engineering ASCE, 130(10):1534-1544.
[37] Wootton, R.J., 1990. The mechanical design of insect wings. Scientific American, 263(5):114-120.
[38] Wootton, R.J., Kukalová-Peck, J., Newman, D.J.S., Muzón, J., 1998. Smart engineering in the Mid-Carboniferous: How well could Palaeozoic dragonflies fly? Science, 282(5389):749-751.
[39] Zeng, L.J., Matsumoto, H., Kawachi, K., 1996. Simultaneous measurement of the shape and thickness of a dragonfly wing. Measurement Science & Technology, 7(12):1728-1732.
[40] Zhang, G., 2007. Studies on New-style Spatial Cantilever Structures by Bionic Modeling of Dragonfly Wings. MS Thesis, Zhejiang University, Hangzhou, p.63-69 (in Chinese).
[41] Zhang, Q.L., Zhang, L., 2000. Three kinds of shape finding problems and their solutions for membrane structures. Journal of Building Structures, 21(5):33-40 (in Chinese).
[42] Zhang, Q.L., Chen, L.X., Luo, X.Q., Yang, Z.L., 2007. Equivalent transform from the force-densities of cable nets to the stresses of membrane elements. Structural Engineering and Mechanics, 26(4):479-482.
[43] Zhang, Y.X., Cheung, Y.K., 2003. A refined non-linear non-conforming triangular plate/shell element. International Journal for Numerical Methods in Engineering, 56(15):2387-2408.
[44] Zhang, Y.X., Kim, K.S., 2005. Linear and geometrically nonlinear analysis of plates and shells by a new refined non-conforming triangular plate/shell element. Computational Mechanics, 36(5):331-342.
Open peer comments: Debate/Discuss/Question/Opinion
<1>