Full Text:   <3901>

Summary:  <2237>

CLC number: X503

On-line Access: 2014-08-04

Received: 2014-06-08

Revision Accepted: 2014-06-24

Crosschecked: 2014-07-18

Cited: 23

Clicked: 7445

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.552-572


Interactions between engineered nanomaterials and agricultural crops: implications for food safety*

Author(s):  Ying-qing Deng1, Jason C. White2, Bao-shan Xing1

Affiliation(s):  1. Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA; more

Corresponding email(s):   bx@umass.edu

Key Words:  Engineered nanomaterials (ENMs), Uptake, Trophic transfer, Food safety, Toxicity and impact

Ying-qing Deng, Jason C. White, Bao-shan Xing. Interactions between engineered nanomaterials and agricultural crops: implications for food safety[J]. Journal of Zhejiang University Science A, 2014, 15(8): 552-572.

@article{title="Interactions between engineered nanomaterials and agricultural crops: implications for food safety",
author="Ying-qing Deng, Jason C. White, Bao-shan Xing",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Interactions between engineered nanomaterials and agricultural crops: implications for food safety
%A Ying-qing Deng
%A Jason C. White
%A Bao-shan Xing
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 552-572
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400165

T1 - Interactions between engineered nanomaterials and agricultural crops: implications for food safety
A1 - Ying-qing Deng
A1 - Jason C. White
A1 - Bao-shan Xing
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 552
EP - 572
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400165

engineered nanomaterials (ENMs) are being discharged into the environment and to agricultural fields, with unknown impacts on crop species. In this paper, we review the literature on ENMs uptake, translocation/distribution, and generational transmission in various crop species, as well as potential material trophic transfer. Previous studies reveal that ENM-exposed crops exhibit adaptive processes in response to stress, including endocytosis/endosome activities, production of antioxidant enzymes, regulation of genes related to cell division/extension and membrane transport. Some agronomic traits of crops are compromised during the adaption response, including photosynthesis, fruit yields, nutritional quality and nitrogen fixation. Cultivation of crops in ENMs-contaminated environments has unknown implications for food safety and quality. Notably, mechanisms underlying ENMs phytotoxicity and bioavailability are unclear. Additional investigations focused on developing novel techniques for in vivo identification/characterization of ENMs are critically needed. Given the abundance of uncertainty in the literature, it is clear that more research is urgently needed in the area of ENMs-crop interactions; only then can one accurately assess exposure, risk, and overall implications for food safety and also enable guidance development for the sustainable implementation of nanotechnology in agriculture and food production/manufacturing.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Article Content


[1] Alidoust, D., Isoda, A., 2013. Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiologiae Plantarum, 35(12):3365-3375. 

[2] Apel, K., Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1):373-399. 

[3] Asli, S., Neumann, P.M., 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32(5):577-584. 

[4] Atha, D.H., Wang, H.H., Petersen, E.J., 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science & Technology, 46(3):1819-1827. 

[5] Auffan, M., Rose, J., Bottero, J.Y., 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10):634-641. 

[6] Barrena, R., Casals, E., Colon, J., 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7):850-857. 

[7] Baruah, S., Dutta, J., 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters, 7(3):191-204. 

[8] Begum, P., Ikhtiari, R., Fugetsu, B., 2011. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12):3907-3919. 

[9] Bergeson, L.L., 2010. Nanosilver: US EPA’s pesticide office considers how best to proceed. Environmental Quality Management, 19(3):79-85. 

[10] Birbaum, K., Brogioli, R., Schellenberg, M., 2010. No evidence for cerium dioxide nanoparticle translocation in maize plants. Environmental Science & Technology, 44(22):8718-8723. 

[11] Bouldin, J.L., Ingle, T.M., Sengupta, A., 2008. Aqueous toxicity and food chain transfer of quantum Dots (TM) in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 27(9):1958-1963. 

[12] Boxall, A.B., Tiede, K., Chaudhry, Q., 2007. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health?. Nanomedicine, 2(6):919-927. 

[13] Canas, J.E., Long, M.Q., Nations, S., 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9):1922-1931. 

[14] Carpita, N., Sabularse, D., Montezinos, D., 1979. Determination of the pore-size of cell-walls of living plant-cells. Science, 205(4411):1144-1147. 

[15] Castiglione, M.R., Giorgetti, L., Geri, C., 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13(6):2443-2449. 

[16] Chalew, T.E.A., Ajmani, G.S., Huang, H.O., Schwab, K.J., 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environmental Health Perspectives, 121(10):1161-1166. 

[17] Cifuentes, Z., Custardoy, L., De La Fuente, J.M., 2010. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. Journal of Nanobiotechnology, 8(26):1-8. 

[18] Corredor, E., Testillano, P.S., Coronado, M.J., 2009. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology, 9:45

[19] De La Torre-Roche, R., Hawthorne, J., Deng, Y., 2012. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environmental Science & Technology, 46(17):9315-9323. 

[20] De La Torre-Roche, R., Hawthorne, J., Musante, C., 2012. Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environmental Science & Technology, 47(2):718-725. 

[21] De La Torre-Roche, R., Hawthorne, J., Deng, Y.Q., 2013. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environmental Science & Technology, 47(21):12539-12547. 

[22] Dimkpa, C.O., Latta, D.E., McLean, J.E., 2013. Fate of CuO and ZnO nano- and microparticles in the plant environment. Environmental Science & Technology, 47(9):4734-4742. 

[23] Dimkpa, C.O., McLean, J.E., Latta, D.E., 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9):1125

[24] Du, W.C., Sun, Y.Y., Ji, R., 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4):822-828. 

[25] Eichert, T., Kurtz, A., Steiner, U., 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 134(1):151-160. 

[26] El-Temsah, Y.S., Joner, E.J., 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1):42-49. 

[27] Fadeel, B., Kagan, V., Krug, H., 2007. There’s plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials. Nanotoxicology, 1(2):73-84. 

[28] Fan, R.M., Huang, Y.C., Grusak, M.A., 2014. Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. Science of The Total Environment, 466-467:503-512. 

[29] Feichtmeier, N., Leopold, K., 2013. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 406(16):3887-3894. 

[30] Feizi, H., Moghaddam, P.R., Shahtahmassebi, N., 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1):101-106. 

[31] Feizi, H., Kamali, M., Jafari, L., 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91(4):506-511. 

[32] Feng, Y., Cui, X., He, S., 2013. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environmental Science & Technology, 47(16):9496-9504. 

[33] Foltete, A.S., Masfaraud, J.F., Bigorgne, E., 2011. Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia fabaEnvironmental Pollution, 159(10):2515-2522. 

[34] Gajewska, E., Sklodowska, M., 2010. Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicology and Environmental Safety, 73(5):996-1003. 

[35] Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., 2000. Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environmental Science & Technology, 34(20):4392-4396. 

[36] Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19(4):1357-1361. 

[37] Gardea-Torresdey, J.L., Rico, C.M., White, J.C., 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology, 48(5):2526-2540. 

[38] Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., 2013. Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science & Technology, 47(18):10645-10652. 

[39] Ghodake, G., Seo, Y.D., Lee, D.S., 2011. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepaJournal of Hazardous Materials, 186(1):952-955. 

[40] Ghosh, M., Bandyopadhyay, M., Mukherjee, A., 2010. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81(10):1253-1262. 

[41] Ghosh, S., Mashayekhi, H., Pan, B., 2008. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir, 24(21):12385-12391. 

[42] Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12):909-930. 

[43] Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J., 2008. Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany, 101(1):187-195. 

[44] Gottschalk, F., Sonderer, T., Scholz, R.W., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 43(24):9216-9222. 

[45] Gottschalk, F., Sun, T.Y., Nowack, B., 2013. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181:287-300. 

[46] Gray, E.P., Coleman, J.G., Bednar, A.J., 2013. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environmental Science & Technology, 47(24):14315-14323. 

[47] Hassellov, M., Readman, J.W., Ranville, J.F., Tiede, K., 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, 17(5):344-361. 

[48] He, D., Dorantes-Aranda, J.J., Waite, T.D., 2012. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environmental Science & Technology, 46(16):8731-8738. 

[49] Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., 2013.  In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano, 7(2):1415-1423. 

[50] Holbrook, R.D., Murphy, K.E., Morrow, J.B., 2008. Trophic transfer of nanoparticles in a simplified invertebrate food web. Nature Nanotechnology, 3(6):352-355. 

[51] Hong, J., Peralta-Videa, J.R., Rico, C., 2014. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environmental Science & Technology, 48(8):4376-4385. 

[52] Hou, W.C., Westerhoff, P., Posner, J.D., 2013. Biological accumulation of engineered nanomaterials: a review of current knowledge. Environmental Science: Processes & Impacts, 15(1):103-122. 

[53] Hummer, A.A., Rompel, A., 2013. The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitroMetallomics, 5(6):597-614. 

[54] Iversen, T.G., Frerker, N., Sandvig, K., 2012. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 10:33

[55] Johnson, R.L., Johnson, G.O., Nurmi, J.T., 2009. Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science & Technology, 43(14):5455-5460. 

[56] Judy, J.D., Unrine, J.M., Bertsch, P.M., 2011. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environmental Science & Technology, 45(2):776-781. 

[57] Judy, J.D., Unrine, J.M., Rao, W., 2012. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environmental Science & Technology, 46(15):8467-8474. 

[58] Judy, J.D., Unrine, J.M., Rao, W., 2012. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue. Environmental Science & Technology, 46(22):12672-12678. 

[59] Kah, M., Beulke, S., Tiede, K., Hofmann, T., 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology, 43(16):1823-1867. 

[60] Kelsey, J.W., White, J.C., 2013. Effect of C60 fullerenes on the accumulation of weathered p,p′-DDE by plant and earthworm species under single and multispecies conditions. Environmental Toxicology and Chemistry, 32(5):1117-1123. 

[61] Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences of the United States of America, 108(3):1028-1033. 

[62] Khodakovskaya, M.V., de Silva, K., Biris, A.S., 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3):2128-2135. 

[63] Khodakovskaya, M.V., Kim, B.S., Kim, J.N., 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1):115-123. 

[64] Khot, L.R., Sankaran, S., Maja, J.M., 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35:64-70. 

[65] Klaine, S.J., Alvarez, P.J.J., Batley, G.E., 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9):1825-1851. 

[66] Klancnik, K., Drobne, D., Valant, J., Koce, J.D., 2011. Use of a modified Allium test with nanoTiO2Ecotoxicology and Environmental Safety, 74(1):85-92. 

[67] Kole, C., Kole, P., Randunu, K.M., 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 13(1):37

[68] Kumari, A., Yadav, S.K., 2014. Nanotechnology in agri-food sector. Critical Reviews in Food Science and Nutrition, 54(8):975-984. 

[69] Kumari, M., Mukherjee, A., Chandrasekaran, N., 2009. Genotoxicity of silver nanoparticles in Allium cepaScience of The Total Environment, 407(19):5243-5246. 

[70] Kumari, M., Khan, S.S., Pakrashi, S., 2011. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepaJournal of Hazardous Materials, 190(1-3):613-621. 

[71] Larue, C., Laurette, J., Herlin-Boime, N., 2012. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of The Total Environment, 431:197-208. 

[72] Larue, C., Pinault, M., Czarny, B., 2012. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. Journal of Hazardous Materials, 227-228:155-163. 

[73] Larue, C., Castillo-Michel, H., Sobanska, S., 2014. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264:98-106. 

[74] Lee, W.M., An, Y.J., Yoon, H., 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27(9):1915-1921. 

[75] Lee, W.M., Kwak, J.I., An, Y.J., 2012. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 86(5):491-499. 

[76] Li, Y., Chen, X., Gu, N., 2008. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. The Journal of Physical Chemistry B, 112(51):16647-16653. 

[77] Lin, D.H., Xing, B.S., 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2):243-250. 

[78] Lin, D.H., Xing, B.S., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15):5580-5585. 

[79] Lin, S.J., Reppert, J., Hu, Q., 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5(10):1128-1132. 

[80] Liu, Q., Zhao, Y., Wan, Y., 2010. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano, 4(10):5743-5748. 

[81] Liu, Q.L., Chen, B., Wang, Q.L., 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 9(3):1007-1010. 

[82] Long, S.P., Zhu, X.G., Naidu, S.L., 2006. Can improvement in photosynthesis increase crop yields?. Plant, Cell & Environment, 29(3):315-330. 

[83] Lopez-Moreno, M.L., De La Rosa, G., Hernandez-Viezcas, J.A., 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19):7315-7320. 

[84] Lopez-Moreno, M.L., De La Rosa, G., Hernandez-Viezcas, J.A., 2010. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. Journal of Agricultural and Food Chemistry, 58(6):3689-3693. 

[85] Ma, C., Chhikara, S., Xing, B., 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry & Engineering, 1(7):768-778. 

[86] Ma, Y.H., He, X., Zhang, P., 2011. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 5(4):743-753. 

[87] Majumdar, S., Peralta-Videa, J.R., Castillo-Michel, H., 2012. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: a review. Analytica Chimica Acta, 755(0):1-16. 

[88] Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J., 2013. Toxicity of engineered nanoparticles in the environment. Analytical Chemistry, 85(6):3036-3049. 

[89] Miralles, P., Johnson, E., Church, T.L., 2012. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. Journal of the Royal Society Interface, 9(77):3514-3527. 

[90] Miralles, P., Church, T.L., Harris, A.T., 2012. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science & Technology, 46(17):9224-9239. 

[91] Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9):405-410. 

[92] Mueller, N.C., Nowack, B., 2008. Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 42(12):4447-4453. 

[93] Musante, C., White, J.C., 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology, 27(9):510-517. 

[94] National Research Council Committee, 2002. National Research Council Committee on Toxicants Pathogens in Biosolids Applied to Land: Advancing Standards and Practices, National Academy Press,:

[95] Nedosekin, D.A., Khodakovskaya, M.V., Biris, A.S., 2011.  In vivo plant flow cytometry: a first proof-of-concept. Cytometry Part A, 79A(10):855-865. 

[96] Nel, A., Xia, T., Madler, L., Li, N., 2006. Toxic potential of materials at the nanolevel. Science, 311(5761):622-627. 

[97] Nel, A.E., Madler, L., Velegol, D., 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8(7):543-557. 

[98] Nichols, G., Byard, S., Bloxham, M.J., 2002. A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. Journal of Pharmaceutical Sciences, 91(10):2103-2109. 

[99] Onelli, E., Prescianotto-Baschong, C., Caccianiga, M., 2008. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. Journal of Experimental Botany, 59(11):3051-3068. 

[100] Oukarroum, A., Bras, S., Perreault, F., 2012. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolectaEcotoxicology and Environmental Safety, 78:80-85. 

[101] Pan, B., Xing, B.S., 2012. Applications and implications of manufactured nanoparticles in soils: a review. European Journal of Soil Science, 63(4):437-456. 

[102] Park, B., Donaldson, K., Duffin, R., 2008. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive-a case study. Inhalation Toxicology, 20(6):547-566. 

[103] Parsons, J.G., Lopez, M.L., Gonzalez, C.M., 2010. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environmental Toxicology and Chemistry, 29(5):1146-1154. 

[104] Petersen, E.J., Henry, T.B., Zhao, J., 2014. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environmental Science & Technology, 48(8):4226-4246. 

[105] Priester, J.H., Ge, Y., Mielke, R.E., 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences of the United States of America, 109(37):E2451-E2456. 

[106] Rico, C.M., Majumdar, S., Duarte-Gardea, M., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8):3485-3498. 

[107] Rico, C.M., Morales, M.I., McCreary, R., 2013. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environmental Science & Technology, 47(24):14110-14118. 

[108] Rico, C.M., Morales, M.I., Barrios, A.C., 2013. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 61(47):11278-11285. 

[109] Rico, C.M., Hong, J., Morales, M.I., 2013. Effect of cerium oxide nanoparticles on rice: A study involving the antioxidant defense system and in vivo fluorescence imaging. Environmental Science & Technology, 47(11):5635-5642. 

[110] Sadiq, I.M., Pakrashi, S., Chandrasekaran, N., Mukherjee, A., 2011. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 13(8):3287-3299. 

[111] Serag, M.F., Kaji, N., Habuchi, S., 2013. Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 3(15):4856-4862. 

[112] Stampoulis, D., Sinha, S.K., White, J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24):9473-9479. 

[113] Stark, W.J., 2011. Nanoparticles in biological systems. Angewandte Chemie-International Edition, 50(6):1242-1258. 

[114] Su, M.Y., Wu, X., Liu, C., 2007. Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2Biological Trace Element Research, 119(2):183-192. 

[115] Szakal, C., Roberts, S.M., Westerhoff, P., 2014. Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS Nano, 8(4):3128-3135. 

[116] Tepfer, M., Taylor, I.E.P., 1981. The permeability of plant-cell walls as measured by gel-filtration chromatography. Science, 213(4509):761-763. 

[117] Unrine, J.M., Hunyadi, S.E., Tsyusko, O.V., 2010. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environmental Science & Technology, 44(21):8308-8313. 

[118] Unrine, J.M., Shoults-Wilson, W.A., Zhurbich, O., 2012. Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environmental Science & Technology, 46(17):9753-9760. 

[119] Wang, H., Kou, X., Pei, Z., 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5(1):30-42. 

[120] Wang, S., Kurepa, J., Smalle, J.A., 2011. Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thalianaPlant, Cell and Environment, 34(5):811-820. 

[121] Wang, Z.Y., Xie, X.Y., Zhao, J., 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 46(8):4434-4441. 

[122] Wild, E., Jones, K.C., 2009. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science & Technology, 43(14):5290-5294. 

[123] Yan, S.H., Zhao, L., Li, H., 2013. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. Journal of Hazardous Materials, 246:110-118. 

[124] Yang, F., Liu, C., Gao, F., 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research, 119(1):77-88. 

[125] Yang, X., Gondikas, A.P., Marinakos, S.M., 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegansEnvironmental Science & Technology, 46(2):1119-1127. 

[126] Zhang, H.F., He, X.A., Zhang, Z.Y., 2011. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environmental Science & Technology, 45(8):3725-3730. 

[127] Zhang, W.X., 2003. Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5(3-4):323-332. 

[128] Zhang, Z.Y., He, X., Zhang, H.F., 2011. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 3(8):816-822. 

[129] Zhao, L.J., Peng, B., Hernandez-Viezcas, J.A., 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano, 6(11):9615-9622. 

[130] Zhao, L.J., Peralta-Videa, J.R., Ren, M.H., 2012. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chemical Engineering Journal, 184:1-8. 

[131] Zhao, L.J., Peralta-Videa, J.R., Rico, C.M., 2014. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry, 62(13):2752-2759. 

[132] Zheng, L., Hong, F.S., Lu, S.P., 2005. Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biological Trace Element Research, 104(1):83-91. 

[133] Zhou, D., Jin, S., Li, L., 2011. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. Journal of Environmental Sciences, 23(11):1852-1857. 

[134] Zhu, H., Han, J., Xiao, J.Q., 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6):713-717. 

[135] Zhu, X.S., Wang, J.X., Zhang, X.Z., 2010. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere, 79(9):928-933. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE