CLC number: TH137.52
On-line Access: 2016-04-05
Received: 2014-11-25
Revision Accepted: 2015-10-19
Crosschecked: 2016-03-15
Cited: 0
Clicked: 4934
Citations: Bibtex RefMan EndNote GB/T7714
Da-yun Yi, Liang Lu, Jun Zou, Xin Fu. Squeal noise in hydraulic poppet valves[J]. Journal of Zhejiang University Science A, 2016, 17(4): 317-324.
@article{title="Squeal noise in hydraulic poppet valves",
author="Da-yun Yi, Liang Lu, Jun Zou, Xin Fu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="4",
pages="317-324",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400351"
}
%0 Journal Article
%T Squeal noise in hydraulic poppet valves
%A Da-yun Yi
%A Liang Lu
%A Jun Zou
%A Xin Fu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 4
%P 317-324
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400351
TY - JOUR
T1 - Squeal noise in hydraulic poppet valves
A1 - Da-yun Yi
A1 - Liang Lu
A1 - Jun Zou
A1 - Xin Fu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 4
SP - 317
EP - 324
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400351
Abstract: The poppet valve is a fundamental component in fluid power systems. Under particular conditions, annoying “squeal” noises may be generated in hydraulic poppet valves. In the present study, the frequency spectrum of the squeal noise is obtained by analyzing the sampling data from the accelerometer mounted on the valve body. It is found that the flow velocity, pressure, and structural parameters have crucial effects on the properties of squeal noise, especially frequency. Larger valve chamber volume or lower backpressure leads to lower fundamental frequency of the squeal noise. An explanation for the squeal noise, as a result of helmholtz resonance, is suggested and proved by experimental results.
Noise analysis is not new in the scientific panorama, but the application in poppet valve is interesting. The results are interesting, and the explanations with regard to cavitation are plausible.
[1]Amirante, R., Distaso, E., Tamburrano, P., 2014. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management, 87:208-219.
[2]Baines, P.G., Mitsudera, H., 1994. On the mechanism of shear flow instabilities. Journal of Fluid Mechanics, 276:327-342.
[3]Baker, D.N., Myhre, D.L., 1969. Effects of leaf shape and boundary layer thickness on photosynthesis in cotton (Gossypium hirsutum). Physiologia Plantarum, 22(5):1043-1049.
[4]Balatka, K., Mochizuki, S., Murata, A., 1996. Flow in an annular-conical passage. JSME International Journal Series B, Fluids and Thermal Engineering, 39(1):66-71.
[5]Dickey, N.S., Selamet, A., 1996. Helmholtz resonators: one-dimensional limit for small cavity length-to-diameter ratios. Journal of Sound and Vibration, 195(3):512-517.
[6]Guo, B., Langrish, T.A.G., Fletcher, D.F., 2001. An assessment of turbulence models applied to the simulation of a two-dimensional submerged jet. Applied Mathematical Modeling, 25(8):535-653.
[7]Kieffer, S.W., 1977. Sound speed in liquid-gas mixtures: water-air and water-steam. Journal of Geophysical Research, 82(20):2895-2904.
[8]Lawson, N.J., Davidson, M.R., 1999. Crossflow characteristics of an oscillation jet in a thin slab casting mould. Journal of Fluids Engineering, 121(3):588-595.
[9]Lu, L., Zou, J., Fu, X., 2012. The acoustics of cavitation in spool valve with U-notches. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(5):540-549.
[10]Nagaya, Y., Murase, M., 2012. Detection of cavitation with directional microphones placed outside piping. Nuclear Engineering and Design, 249:140-145.
[11]Nakano, M., Outa, E., Tajima, K., 1988. Noise and vibration related to the patterns of supersonic annular flow in a pressure reducing gas valve. Journal of Fluids Engineering, 110(1):55-61.
[12]Oshima, S., Ichikawa, T., 1985. Cavitation phenomena and performance of oil hydraulic poppet valve: 1st report. Mechanism of generation of cavitation and flow performance. Transactions of the Japan Society of Mechanical Engineers Series B, 51(462):427-435.
[13]Panton, R.L., 1990. Effect of orifice geometry on Helmholtz resonator excitation by grazing flow. AIAA Journal, 28(1):60-65.
[14]Panton, R.L., Miller, J.M., 1975. Resonant frequencies of cylindrical Helmholtz resonators. The Journal of the Acoustical Society of America, 57(6):1533-1535.
[15]Porteiro, J.L.F., Weber, S.T., Rahman, M.M., 1997. An experimental study of flow induced noise in counterbalance valves. International Symposium on Fluid–Structure Interactions, Aeroelasticity, Flow–Induced Vibration and Noise, Dallas, USA, p.557-562.
[16]Rahman, M.M., Porteiro, J.L.F., Weber, S.T., 1997. Numerical simulation and animation of oscillating turbulent flow in a counterbalance valve. Energy Conversion Engineering Conference, IECEC-97, Proceedings of the 32nd Intersociety, Honolulu, USA, p.1525-1530.
[17]Raman, G., 1999. Supersonic jet screech: half-century from Powell to the present. Journal of Sound and Vibration, 225(3):543-571.
[18]Rienstra, S.W., Hirschberg, A., 2012. An Introduction to Acoustics. Eindhoven University of Technology, Eindhoven, p.36-37.
[19]Rockwell, D., Naudascher, E., 1979. Self-sustained oscillations of impinging free shear layers. Annual Review of Fluid Mechanics, 11(1):67-94.
[20]Selamet, A., Lee, I., 2003. Helmholtz resonator with extended neck. The Journal of the Acoustical Society of America, 113(4):1975-1985.
[21]Shin, Y.C., 1991. Static and dynamic characteristics of a two stage pilot relief valve. Journal of Dynamic Systems, Measurement, and Control, 113(2):280-288.
[22]Tang, S.K., 2005. On Helmholtz resonators with tapered necks. Journal of Sound and Vibration, 279(3-5):1085-1096.
[23]Testud, P., Aurégan, Y., Moussou, P., et al., 2009. The whistling potentiality of an orifice in a confined flow using an energetic criterion. Journal of Sound and Vibration, 325(4-5):769-780.
[24]Wang, Y.G., Shintani, M., Liu, S.J., et al., 1998. Cavitation characteristics around a hollow jet valve (observation by high-speed photographs and monitoring by vibration). Japanese Turbomachinery Society, 26(1998):361-368.
Open peer comments: Debate/Discuss/Question/Opinion
<1>