Full Text:   <444>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-20

Received: 2023-10-11

Revision Accepted: 2023-12-23

Crosschecked: 2024-08-20

Cited: 0

Clicked: 627

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yuanzhi XU

https://orcid.org/0009-0000-3315-6755

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.8 P.605-617

http://doi.org/10.1631/jzus.A2300517


Frequency-domain analysis of fluid-structure interaction in aircraft hydraulic pipeline systems: numerical and experimental studies


Author(s):  Yang DENG, Zongxia JIAO, Yuanzhi XU

Affiliation(s):  School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; more

Corresponding email(s):   yz.xu.ac@gmail.com

Key Words:  Fluid-structure interaction (FSI), Frequency-domain analysis, Aircraft hydraulic pipeline, Pipeline vibration, Transfer matrix method (TMM)


Share this article to: More |Next Article >>>

Yang DENG, Zongxia JIAO, Yuanzhi XU. Frequency-domain analysis of fluid-structure interaction in aircraft hydraulic pipeline systems: numerical and experimental studies[J]. Journal of Zhejiang University Science A, 2024, 25(8): 605-617.

@article{title="Frequency-domain analysis of fluid-structure interaction in aircraft hydraulic pipeline systems: numerical and experimental studies",
author="Yang DENG, Zongxia JIAO, Yuanzhi XU",
journal="Journal of Zhejiang University Science A",
volume="25",
number="8",
pages="605-617",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300517"
}

%0 Journal Article
%T Frequency-domain analysis of fluid-structure interaction in aircraft hydraulic pipeline systems: numerical and experimental studies
%A Yang DENG
%A Zongxia JIAO
%A Yuanzhi XU
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 8
%P 605-617
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300517

TY - JOUR
T1 - Frequency-domain analysis of fluid-structure interaction in aircraft hydraulic pipeline systems: numerical and experimental studies
A1 - Yang DENG
A1 - Zongxia JIAO
A1 - Yuanzhi XU
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 8
SP - 605
EP - 617
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300517


Abstract: 
The fluid-structure interaction (FSI) in aircraft hydraulic pipeline systems is of great concern because of the damage it causes. To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments, we studied the frequency-domain modeling and solution method for FSI in these pipeline systems. Fourteen partial differential equations (PDEs) are utilized to model the pipeline FSI, considering both frequency-dependent friction and bending-flexibility modification. To address the numerical instability encountered by the traditional transfer matrix method (TMM) in solving relatively complex pipelines, an improved TMM is proposed for solving the PDEs in the frequency domain, based on the matrix-stacking strategy and matrix representation of boundary conditions. The proposed FSI model and improved solution method are validated by numerical cases and experiments. An experimental rig of a practical hydraulic system, consisting of an aircraft engine-driven pump, a Z-shaped aero-hydraulic pipeline, and a throttle valve, was constructed for testing. The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results, which indicate that the proposed model and solution method are effective in practical applications. The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.

飞机液压管路系统流固耦合频域分析:数值和实验研究

作者:邓洋1,焦宗夏1,2,3,4,5,徐远志1,2,3,4,5
机构:1北京航空航天大学,自动化科学与电气工程学院,中国北京,100191;2北京航空航天大学,前沿科学技术创新研究院,中国北京,100191;3北京航空航天大学,先进航空机载系统工信部重点实验室,中国北京,100191;4北京航空航天大学宁波创新研究院,浙江宁波,315800;5天目山实验室,浙江杭州,310023
目的:为了实现对液压管路系统流固耦合振动特性的准确预测,本文研究了基于改进型传递矩阵法(TMM)的流固耦合频域分析方法,并针对复杂充液管路系统的频率响应特性进行计算,以期为机载管路的振动设计提供支撑。
创新点:1.建立了完整的管路流固耦合模型,并考虑了全管段的摩擦耦合以及弯管的刚度修正;2.综合传矩阵堆叠策略和边界条件的矩阵表达,提出了一种改进型TMM,解决了传统TMM计算不稳定的问题;3.搭建了机载管路实验台,并采用航空液压泵和负载节流阀对机载Z型管路进行了流固耦合实验,验证了所提模型与方法的有效性和准确性。
方法:1.对于管路14方程流固耦合模型,考虑流体粘性摩擦,并在弯管弯曲段考虑其刚度修正因子;2.通过数值仿真对比TMM计算结果与有限元法计算结果,并基于传递矩阵堆叠技术的改进型TMM方法来解决L型弯管案例中出现的计算失稳问题;3.在实际液压系统中开展管道流固耦合实验,并以管道加速度与管道入口压力的比值阻抗为指标,验证改进型TMM方法的准确性。
结论:1.针对飞机液压管路系统长距离、多弯曲段的特点,建立了同时考虑流体摩擦和弯曲段刚度修正的管路流固耦合模型,并通过数值案例验证了模型的正确性;2.为解决计算不稳定性问题,提出了一种基于传递矩阵堆叠技术的改进型TMM,并通过数值仿真案例验证了它的有效性;3.搭建了由飞机发动机驱动泵、Z型液压管路和负载节流阀组成的实验台,研究了实际液压系统的流固耦合实验方法和边界条件设置,并验证了实验、有限元方法和改进型TMM的一致性,进而证明了所提流固耦合模型和改进型TMM方法的有效性。

关键词:流固耦合;频域分析;飞机液压管道;管道振动;传递矩阵法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BrownFT, TentarelliSC, 2001. Dynamic behavior of complex fluid-filled tubing systems—part 1: tubing analysis. Journal of Dynamic Systems, Measurement, and Control, 123(1):71-77.

[2]DavidsonLC, SmithJE, 1969. Liquid-structure coupling in curved pipes. The Shock and Vibration Bulletin, 40(4):197-207.

[3]DavidsonLC, SmithJE, 1972. Liquid-structure coupling in curved pipes‍–‍II. The Shock and Vibration Bulletin, 43(1):123-136.

[4]de JongCAF, 1994. Analysis of Pulsations and Vibrations in Fluid-Filled Pipe Systems. PhD Thesis, Eindhoven University of Technology, Eindhoven, the Netherlands.

[5]FerrasD, MansoPA, SchleissAJ, et al., 2018. One-dimensional fluid-structure interaction models in pressurized fluid-filled pipes: a review. Applied Sciences, 8(10):1844.

[6]GaoPX, ZhaiJY, YanYY, et al., 2016. A model reduction approach for the vibration analysis of hydraulic pipeline system in aircraft. Aerospace Science and Technology, 49:144-153.

[7]GaoPX, YuT, ZhangYL, et al., 2021. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chinese Journal of Aeronautics, 34(4):83-114.

[8]GuoXM, CaoYM, MaH, et al., 2022a. Dynamic analysis of an L-shaped liquid-filled pipe with interval uncertainty. International Journal of Mechanical Sciences, 217:107040.

[9]GuoXM, XiaoCL, GeH, et al., 2022b. Dynamic modeling and experimental study of a complex fluid-conveying pipeline system with series and parallel structures. Applied Mathematical Modelling, 109:186-208.

[10]GuoXM, XiaoCL, MaH, et al., 2022c. Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling. Applied Mathematics and Mechanics, 43(8):‍1269-1288.

[11]GuoXM, CaoYM, MaH, et al., 2022d. Vibration analysis for a parallel fluid-filled pipelines-casing model considering casing flexibility. International Journal of Mechanical Sciences, 231:107606.

[12]GuoXM, GeH, XiaoCL, et al., 2022e. Vibration transmission characteristics analysis of the parallel fluid-conveying pipes system: numerical and experimental studies. Mechanical Systems and Signal Processing, 177:109180.

[13]GuoXM, GaoPX, MaH, et al., 2023. Vibration characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and pulsation excitation. Mechanical Systems and Signal Processing, 189:110086.

[14]JiWH, SunW, DuDX, et al., 2023. Dynamics modeling and stress response solution for liquid-filled pipe system considering both fluid velocity and pressure fluctuations. Thin-Walled Structures, 188:110831.

[15]JiaoZX, HuaQ, YuK, 1999. Frequency domain analysis of vibrations in liquid filled piping systems. Acta Aeronautica et Astronautica Sinica, 20(4):316-320 (in Chinese).

[16]JohnstonDN, EdgeKA, 1991. The impedance characteristics of fluid power components: restrictor and flow control valves. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 205(1):3-10.

[17]KwongAHM, EdgeKA, 1996. Structure-borne noise prediction in liquid-conveying pipe systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 210(3):189-200.

[18]LesmezMW, WiggertDC, HatfieldFJ, 1990. Modal analysis of vibrations in liquid-filled piping systems. Journal of Fluids Engineering, 112(3):311-318.

[19]LiQS, YangK, ZhangLX, et al., 2002. Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method. International Journal of Mechanical Sciences, 44(10):2067-2087.

[20]LiSJ, LiuGM, KongWT, 2014. Vibration analysis of pipes conveying fluid by transfer matrix method. Nuclear Engineering and Design, 266:78-88.

[21]LiSJ, KarneyBW, LiuGM, 2015. FSI research in pipeline systems–a review of the literature. Journal of Fluids and Structures, 57:277-297. https://dx.doi.org/10.1016/j.jfluidstructs.2015.06.020

[22]LiX, LiWH, ShiJ, et al., 2022. Pipelines vibration analysis and control based on clamps’ locations optimization of multi-pump system. Chinese Journal of Aeronautics, 35(6):352-366.

[23]LiuGM, LiYH, 2011. Vibration analysis of liquid-filled pipelines with elastic constraints. Journal of Sound and Vibration, 330(13):3166-3181.

[24]OuyangXP, GaoF, YangHY, et al., 2012a. Modal analysis of the aircraft hydraulic-system pipeline. Journal of Aircraft, 49(4):1168-1174.

[25]OuyangXP, GaoF, YangHY, et al., 2012b. Two-dimensional stress analysis of the aircraft hydraulic system pipeline. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(6):‍532-539.

[26]PardueTE, VignessI, 1951. Properties of thin-walled curved tubes of short-bend radius. Journal of Fluids Engineering, 73(1):77-84.

[27]SkalakR, 1956. An extension of the theory of water hammer. Journal of Fluids Engineering, 78(1):105-115.

[28]TentarelliSC, BrownFT, 2001. Dynamic behavior of complex fluid-filled tubing systems—part 2: system analysis. Journal of Dynamic Systems, Measurement, and Control, 123(1):78-84.

[29]TijsselingAS, 1996. Fluid-structure interaction in liquid-filled pipe systems: a review. Journal of Fluids and Structures, 10(2):109-146.

[30]TijsselingAS, 2019. An overview of fluid-structure interaction experiments in single-elbow pipe systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(4):233-242.

[31]VignessI, 1943. Elastic properties of curved tubes. Journal of Fluids Engineering, 65(2):105-117.

[32]WangSP, TomoviM, LiuH, 2015. Commercial Aircraft Hydraulic Systems. Shanghai Jiao Tong University Press, Shanghai, China, p.53-60.

[33]WiggertDC, TijsselingAS, 2001. Fluid transients and fluid-structure interaction in flexible liquid-filled piping. Applied Mechanics Reviews, 54(5):455-481.

[34]WiggertDC, HatfieldFJ, StuckenbruckS, 1987. Analysis of liquid and structural transients in piping by the method of characteristics. Journal of Fluids Engineering, 109(2):161-165.

[35]XuYZ, JohnstonDN, JiaoZX, et al., 2014. Frequency modelling and solution of fluid-structure interaction in complex pipelines. Journal of Sound and Vibration, 333(10):2800-2822.

[36]YangK, LiQS, ZhangLX, 2004. Longitudinal vibration analysis of multi-span liquid-filled pipelines with rigid constraints. Journal of Sound and Vibration, 273(1-2):125-147.

[37]ZhangL, TijsselingSA, VardyEA, 1999. FSI analysis of liquid-filled pipes. Journal of Sound and Vibration, 224(1):69-99.

[38]ZielkeW, 1968. Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, 90(1):109-115.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE