Full Text:   <5457>

Summary:  <2153>

CLC number: TK313

On-line Access: 2016-03-07

Received: 2015-04-07

Revision Accepted: 2015-06-25

Crosschecked: 2016-02-29

Cited: 1

Clicked: 5122

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hai-fei Liu

http://orcid.org/0000-0002-6276-276X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.3 P.230-239

http://doi.org/10.1631/jzus.A1500082


Numerical study on performance of perforated plate applied to cryogenic fluid flowmeter


Author(s):  Hai-fei Liu, Hong Tian, Hong Chen, Tao Jin, Ke Tang

Affiliation(s):  State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China; more

Corresponding email(s):   ktang@zju.edu.cn

Key Words:  Perforated plate, Flowmeter, Cryogenic fluids, Discharge coefficient, Pressure loss coefficient


Hai-fei Liu, Hong Tian , Hong Chen , Tao Jin , Ke Tang . Numerical study on performance of perforated plate applied to cryogenic fluid flowmeter[J]. Journal of Zhejiang University Science A, 2016, 17(3): 230-239.

@article{title="Numerical study on performance of perforated plate applied to cryogenic fluid flowmeter",
author="Hai-fei Liu, Hong Tian , Hong Chen , Tao Jin , Ke Tang ",
journal="Journal of Zhejiang University Science A",
volume="17",
number="3",
pages="230-239",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500082"
}

%0 Journal Article
%T Numerical study on performance of perforated plate applied to cryogenic fluid flowmeter
%A Hai-fei Liu
%A Hong Tian
%A Hong Chen
%A Tao Jin
%A Ke Tang
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 3
%P 230-239
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500082

TY - JOUR
T1 - Numerical study on performance of perforated plate applied to cryogenic fluid flowmeter
A1 - Hai-fei Liu
A1 - Hong Tian
A1 - Hong Chen
A1 - Tao Jin
A1 - Ke Tang
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 3
SP - 230
EP - 239
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500082


Abstract: 
The perforated plate is one of the effective devices for measuring flow rate accurately. In this study, a perforated plate is investigated for its characteristics, mainly including discharge coefficient C and pressure loss coefficient ζ, when applied to cryogenic fluids with the help of ANSYS Fluent. Three cryogenic fluids are studied, including liquid nitrogen (LN2), liquid oxygen (LO2), and liquid hydrogen (LH2). For comparison, two states of water are also investigated. The realizable κ-ε model with standard wall function is used to describe the turbulence and simulate the near-wall flow. The Schnerr-Sauer cavitation model is used to investigate the effect of cavitation on the performance of the perforated plate. Simulation results indicate that the upper limit of Reynolds number of the perforated plate is significantly dependent on the properties of the measured fluid when the temperatures of the fluids are set as the normal boiling point temperatures and the outlet pressures are 0.2 MPa.

应用于低温流体流量计的多孔板性能数值研究

目的:相较于常温流体,低温流体的物性存在显著不同,因而对流量计的工作特性也会带来相应的影响。本文旨在探讨多孔板应用于低温流体流量测量时的性能(即流出系数与压力损失系数)特征。
创新点:基于数值研究结果,发现多孔板流量计应用于低温流体流量测量时,其稳定测量区间上限雷诺数显著增大,并基于物性特点从空化特性的角度探讨上限雷诺数显著增大的原因。
方法:采用数值模拟的方法,经网格独立性验证(表1和图5)和模型验证(图6和图8)后,结合Realizable κ-ε湍流模型与Schnerr-Sauer空化模型,研究同一种结构的多孔板应用于液氮、液氧、液氢三种低温流体和水流量测量时其流出系数与压力损失系数变化的异同(图11、图12和表5);并基于低温流体的物性特点(表3),对其具有较大上限雷诺数的计算结果进行原因分析。
结论:对于同一种多孔板结构,与水相比,低温流体具有较宽的稳定雷诺数测量范围,其中,与多孔板结构相关的下限雷诺数差异较小,而受空化影响的上限雷诺数差别较大;低温流体具有较大的上限雷诺数,其原因在于,与水相比较,低温流体的密度与运动粘度平方的乘积ρv2明显较小。

关键词:多孔板;流量计;低温流体;流出系数;压力损失系数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anderson, J.D., 1995. Computational Fluid Dynamics—the Basics with Applications. McGraw-Hill Inc., New York.

[2]ANSYS Inc., 2012. Theory Guide, ANSYS FLUENT 14.5 Documentation. ANSYS Inc.

[3]Erdal, A., 1998. A numerical investigation of different parameters that affect the performance of a flow conditioner. Flow Measurement and Instrumentation, 8(2):93-102.

[4]Gan, G.H., Riffat, S.B., 1997. Pressure loss characteristics of orifice and perforated plates. Experimental Thermal and Fluid Science, 14(2):160-165.

[5]Guo, B.Y., Hou, Q.F., Yu, A.B., et al., 2013. Numerical modelling of the gas flow through perforated plates. Chemical Engineering Research and Design, 91(3):403-408.

[6]Hord, J., 1973. Cavitation in Liquid Cryogens. 2: Hydrofoil. Technical Report No. NASA-CR-2156, National Aeronautics and Space Administrator. Available from http://ntrs.nasa.gov/search.jspR=19730007528 [Accessed on ]

[7]Huang, S.F., Ma, T.Y., Wang, D., et al., 2013. Study on discharge coefficient of perforated orifices as a new kind of flowmeter. Experimental Thermal and Fluid Science, 46:74-83.

[8]Idelchik, I.E., 1989. Flow Resistance: a Design Guide for Engineers. Hemisphere Publishing Corporation, New York, p.69-75.

[9]ISO (International Organization for Standardization), 2003a. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full—Part 1: General Principles and Requirements, ISO 5167-1:2003. ISO, Geneva.

[10]ISO (International Organization for Standardization), 2003b. Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full—Part 2: Orifice Plates, ISO 5167-2:2003. ISO, Geneva.

[11]Kolodzie, P.A.Jr., van Winkle, M., 1957. Discharge coefficients through perforated plates. AIChE Journal, 3(3):305-312.

[12]Kumar, P., Bing, M.W.M., 2011. A CFD study of low pressure wet gas metering using slotted orifice meters. Flow Measurement and Instrumentation, 22(1):33-42.

[13]Landau, L.D., Lifshitz, E.M., 2008. Fluid Mechanics: Volume 6 (Course of Theoretical Physics). Beijing Word Publishing Corporation, Beijing, China, p.8-9.

[14]Malavasi, S., Messa, G., 2011. Dissipation and cavitation characteristics of single-hole orifices. Journal of Fluids Engineering, 133(5):051302.

[15]Malavasi, S., Messa, G., Fratino, U., et al., 2012. On the pressure losses through perforated plates. Flow Measurement and Instrumentation, 28:57-66.

[16]Maynes, D., Holt, G.J., Blotter, J., 2013. Cavitation inception and head loss due to liquid flow through perforated plates of varying thickness. Journal of Fluids Engineering, 135(3):031302.

[17]Roache, P.J., 1994. Perspective: a method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, 116(3):405-413.

[18]Schnerr, G.H., Sauer, J., 2001. Physical and numerical modeling of unsteady cavitation dynamics. Proceedings of the 4th International Conference on Multiphase Flow, New Orleans, USA.

[19]Shaaban, S., 2014. Optimization of orifice meter’s energy consumption. Chemical Engineering Research and Design, 92(6):1005-1015.

[20]Singh, R.K., Singh, S.N., Seshadri, V., 2009. Study on the effect of vertex angle and upstream swirl on the performance characteristics of cone flowmeter using CFD. Flow Measurement and Instrumentation, 20(2):69-74.

[21]Singh, S.N., Seshadri, V., Singh, R.K., et al., 2006. Effect of upstream flow disturbances on the performance characteristics of a V-cone flowmeter. Flow Measurement and Instrumentation, 17(5):291-297.

[22]Smith, P.L.Jr., van Winkle, M., 1958. Discharge coefficients through perforated plates at Reynolds numbers of 400 to 3,000. AIChE Journal, 4(3):266-268.

[23]Testud, P., Moussou, P., Hirschberg, A., et al., 2007. Noise generated by cavitating single-hole and multi-hole orifices in a water pipe. Journal of Fluids and Structures, 23(2):163-189.

[24]Zhao, T.Y., Zhang, J.L., Ma, L.D., 2011. A general structural design methodology for multi-hole orifices and its experimental application. Journal of Mechanical Science and Technology, 25(9):2237-2246.

[25]Zhu, J.K., Chen, Y., Zhao, D.F., et al., 2015. Extension of the Schnerr-Sauer model for cryogenic cavitation. European Journal of Mechanics-B/Fluids, 52:1-10.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE