Full Text:   <1538>

Summary:  <956>

CLC number: TG306; TH162.1

On-line Access: 2016-08-05

Received: 2015-06-17

Revision Accepted: 2015-11-02

Crosschecked: 2016-07-24

Cited: 0

Clicked: 3387

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin Wang

http://orcid.org/0000-0003-3106-021X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.8 P.646-666

http://doi.org/10.1631/jzus.A1500180


A study of 3D finite element modeling method for stagger spinning of thin-walled tube


Author(s):  Jin Wang, Ting Ge, Guo-dong Lu, Fei Li

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   dwjcom@zju.edu.cn

Key Words:  Stagger spinning, 3D finite element (3D-FE) modeling, Roller interval, Thin-walled tube


Jin Wang, Ting Ge, Guo-dong Lu, Fei Li. A study of 3D finite element modeling method for stagger spinning of thin-walled tube[J]. Journal of Zhejiang University Science A, 2016, 17(8): 646-666.

@article{title="A study of 3D finite element modeling method for stagger spinning of thin-walled tube",
author="Jin Wang, Ting Ge, Guo-dong Lu, Fei Li",
journal="Journal of Zhejiang University Science A",
volume="17",
number="8",
pages="646-666",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500180"
}

%0 Journal Article
%T A study of 3D finite element modeling method for stagger spinning of thin-walled tube
%A Jin Wang
%A Ting Ge
%A Guo-dong Lu
%A Fei Li
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 8
%P 646-666
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500180

TY - JOUR
T1 - A study of 3D finite element modeling method for stagger spinning of thin-walled tube
A1 - Jin Wang
A1 - Ting Ge
A1 - Guo-dong Lu
A1 - Fei Li
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 8
SP - 646
EP - 666
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500180


Abstract: 
A modified 3D finite element (3D-FE) model is developed under the FE software environment of LS-DYNA based on characteristics of stagger spinning process and actual production conditions. Several important characteristics of the model are proposed, including full model, hexahedral element, speed boundary mode, full simulation, double-precision mode, and no-interference. Modeling procedures and key technologies are compared and summarized: speed mode is superior to displacement mode in simulation accuracy and stability; time truncation is an undesirable option for analysis of the distribution trend of time-history parameters to guarantee that the data has reached the stable state; double-precision mode is more suitable for stagger spinning simulation, as truncation error has obvious effects on the accuracy of results; interference phenomenon can lead to obvious oscillation and mutation simulation results and influence the reliability of simulation significantly. Then, based on the modified model, some improvements of current reported results of roller intervals have been made, which lead to higher accuracy and reliability in the simulation.

This paper presented a modified three-dimensional finite element model based on characteristics of stagger spinning process and actual production conditions. Using this methodology, the roller intervals could be predicted.

薄壁筒形件错距旋压有限元仿真模型构建方法研究

目的:探究错距旋压仿真模型关键特性参数影响,改进建模方法,克服现有模型方案的缺陷,构建更准确、可靠和稳定的错距旋压有限元仿真模型。
创新点:1. 提供包括全模型、六面体离散、速度边界、全仿真、双精度和无干涉模型等在内的改进有限元模型构建方法;2. 基于所构建的改进模型,完善错距值对成型过程影响的现有结论。
方法:1. 通过能量、网格独立性和过程参数分析,验证改进有限元模型的可行性和可靠性; 2. 通过对比仿真和数据分析,获得边界模式、精度模式、时间截断和错距干涉对仿真结果的影响;3. 通过仿真模拟,完善现有受干涉、单精度、时间截断和位移边界影响的错距值研究成果。
结论:1. 速度边界模式较之位移边界模式具有更高的计算精度和效率;2. 时间截断不能确保获取稳态结果,不利于计算的准确性和稳定性;3. 截断误差对错距旋压成型结果影响显著,计算过程中应采用双精度模式;4. 错距干涉严重干扰计算的正确性和可靠性,应在实验设计阶段予以排除;5. 针对现有错距值研究受干涉、单精度、时间截断和位移边界影响的现状,基于改进模型,完善错距影响结论(表11)。

关键词:错距旋压;有限元三维建模;错距值;薄壁筒形件

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheng, X.Q., Sun, L.Y., Xia, Q.X., 2011. Processing parameters optimization for stagger spinning of trapezoidal inner gear. Advanced Materials Research, 189-193:2754-2758.

[2]Essa, K., Hartley, P., 2010. Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(11):1691-1705.

[3]Fazeli, A.R., Ghoreishi, M., 2009. Investigation of effective parameters on surface roughness in thermomechanical tube spinning process. International Journal of Material Forming, 2(4):261-270.

[4]Fazeli, A.R., Ghoreishi, M., 2011. Statistical analysis of dimensional changes in thermomechanical tube-spinning process. The International Journal of Advanced Manufacturing Technology, 52(5):597-607.

[5]Gadala, M.S., Wang, J., 1999. Simulation of metal forming processes with finite element methods. International Journal for Numerical Methods in Engineering, 44(10):1397-1428.

[6]Ge, D., 2012. Research on FEM Numerical Simulation of Power Spinning of Rod Bushing and Process Parameters. MS Thesis, North University of China, Taiyuan, China (in Chinese).

[7]Ge, T., Wang, J., Lu, G.D., et al., 2015. A study of influence of interference phenomenon on stagger spinning of thin-walled tube. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(12):2265-2283.

[8]Hua, F.A., Yang, Y.S., Zhang, Y.N., et al., 2005. Three-dimensional finite element analysis of tube spinning. Jorunal of Materials Processing Technology, 168(1):68-74.

[9]Huang, L., Yang, H., Zhan, M., 2008. 3D-FE modeling method of splitting spinning. Computational Materials Science, 42(4):643-652.

[10]Lexian, H., Dariani, B.M., 2008. An analytical contact model for finite element analysis of tube spinning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(11):1375-1385.

[11]Lexian, H., Dariani, B.M., 2009. Effect of roller nose radius and release angle on the forming quality of a hot-spinning process using a non-linear finite element shell analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(6):713-722.

[12]Li, K.Z., Hao, N.H., Lu, Y., et al., 1998. Research on the distribution of the displacement in backward tube spinning. Journal of Materials Processing Technology, 79(1-3):185-188.

[13]Li, Y., Wang, J., Lu, G.D., et al., 2013. Three-dimensional finite element analysis of effects of roller intervals on tool forces and wall thickness in stagger spinning of thin-walled tube. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(7):1429-1440.

[14]Li, Y., Wang, J., Lu, G.D., et al., 2014. A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(6):432-446.

[15]Liu, F., 2006. Finite Element Analysis of Process Power-Spinning for Cylindrical Part. MS Thesis, Sichuan University, Chengdu, China (in Chinese).

[16]LSTC (Livermore Software Technology Corporation), 2007. LS-DYNA Keyword User’s Manual (Version 971). LSTC, Livermore, USA.

[17]Ma, S., 2008. Research on the Forming Law of Aluminum Alloy Draw-spinning. MS Thesis, Yanshan University, Qinhuangdao, China (in Chinese).

[18]Mohebbi, M.S., Akbarzadeh, A., 2010. Experimental study and FEM analysis of redundant strains in flow forming of tubes. Journal of Materials Processing Technology, 210(2):389-395.

[19]Tan, W., 2009. Research on 1Cr18Ni9 Stainless Steel Tube Stagger Spinning. MS Thesis, Shenyang Ligong University, Shenyang, China (in Chinese).

[20]Wong, C.C., Dean, T.A., Lin, J., 2003. A review of spinning, shear forming and flow forming processes. International Journal of Machine Tools and Manufacture, 43(14):1419-1435.

[21]Xia, Q.X., Zhang, P., Cheng, X.Q., et al., 2012. Orthogonal experimental study on forming process parameters of tube stagger spinning. Forging & Stamping Technology, 37(06):42-46.

[22]Xu, W.C., Shan, D.B., Lu, Y., et al., 2005. Research on the characteristics of hot deformation in BT20 titanium alloy and its optimum spinning temperature range. Journal of Materials Science & Technology, 21(6):807-812.

[23]Xue, K.M., Lu, Y., Zhao, X.M., 1997. The disposal of key problems in the FEM analysis of tube stagger spinning. Journal of Materials Processing Technology, 69(1-3):176-179.

[24]Yang, H., Huang, L., Zhan, M., 2010. Coupled thermos-mechanical FE simulation of the hot splitting spinning process of magnesium alloy AZ31. Computational Materials Science, 47(3):857-866.

[25]Zhang, J., Zhan, M., Yang, H., et al., 2012. 3D-FE modeling for power spinning of large ellipsoidal heads with variable thicknesses. Computational Materials Science, 53(1):303-313.

[26]Zhang, N., Tan, W., Li, Y.H., et al., 2009. Numerical simulation and spinning force analysis for tube stagger spinning. Transactions of Shenyang Ligong University, 28(05):55-58.

[27]Zhao, Y., Li, Y., 2008. Forming Technology and Application. Machinery Industry Press, Beijing, China (in Chinese).

[28]Zoghi, H., Arezoodar, A.F., 2013. Finite element study of stress and strain state during hot tube necking process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(4):551-564.

[29]Zoghi, H., Arezoodar, A.F., Sayeaftabi, M., 2013. Enhanced finite element analysis of material deformation and strain distribution in spinning of 42CrMo steel tubes at elevated temperature. Materials & Design, 47:234-242.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE