Full Text:   <5830>

Summary:  <2406>

CLC number: TH161.12

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-12-11

Cited: 9

Clicked: 7121

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin-yuan Qian

http://orcid.org/0000-0002-5438-0833

Zhi-jiang Jin

http://orcid.org/0000-0002-8063-709X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.1 P.54-64

http://doi.org/10.1631/jzus.A1500228


Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements


Author(s):  Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu

Affiliation(s):  1Institute of Process Equipment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jzj@zju.edu.cn

Key Words:  Computational fluid dynamics (CFD), Pilot-control globe valve (PCGV), Valve core displacement, Cavitation


Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements[J]. Journal of Zhejiang University Science A, 2016, 17(1): 54-64.

@article{title="Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements",
author="Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="1",
pages="54-64",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500228"
}

%0 Journal Article
%T Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements
%A Jin-yuan Qian
%A Bu-zhan Liu
%A Zhi-jiang Jin
%A Jian-kai Wang
%A Han Zhang
%A An-le Lu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 1
%P 54-64
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500228

TY - JOUR
T1 - Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements
A1 - Jin-yuan Qian
A1 - Bu-zhan Liu
A1 - Zhi-jiang Jin
A1 - Jian-kai Wang
A1 - Han Zhang
A1 - An-le Lu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 1
SP - 54
EP - 64
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500228


Abstract: 
The pilot-control globe valve (PCGV) is a novel globe valve with a piston-type valve core and a small pilot valve. It can utilize a pressure difference to control the state of the main valve by the pilot valve. In this paper, a mathematical model of PCGV is established and a computational fluid dynamics (CFD) method is used to numerically simulate its flow and cavitation characteristics. Analysis of the pressure difference between the upside and downside of the valve core and comparison with similar previous work increase the reliability of the simulation. Then an analysis of flow and cavitation characteristics is carried out with three comparisons: a comparison between opened and closed states, a comparison between different inlet velocities, and a comparison between different valve core displacements. The results demonstrate that the vapor volume fraction reaches its peak point at the valve seat near the outlet tube, and that a higher inlet velocity or smaller valve core displacement can cause greater cavitation damage. This study can help further design work for optimization and engineering applications of PCGV.

先导式截止阀在不同阀芯位置下流动和汽蚀特性的数值分析

目的:先导式截止阀可通过一个先导阀,利用流体在阀门前后自身的压差控制主阀的启闭,是一种新型节能型截止阀。本文探讨该阀在开启和关闭状态下、不同入口速度情况下和不同阀芯位置下的流动和汽蚀特性,为后期结构优化提供设计建议。
创新点:1. 分析先导式截止阀的阀芯上下表面压差的变化情况,验证其可行性和模型准确性;2. 建立数值模型,对先导式截止阀在不同启闭状态和不同阀芯位移情况下进行流动和汽蚀分析。
方法:1. 通过数值模拟,分析阀芯上下表面的压差,并与现有文献进行比较,验证模型的准确性(图3);2. 建立开启和关闭条件下的阀门模型,比较两种状态下该阀的流动和汽蚀特性(图4和5);3. 建立不同入口速度条件下的阀门模型,比较分析速度对该阀的汽蚀情况的影响(图6);4. 建立不同阀芯位置的阀门模型,比较分析不同阀芯位置下的速度和压力情况,进一步验证该阀的可行性,并分析阀芯位置对阀门汽蚀的影响(图7)。
结论:1. 在开启和关闭状态下,流速和汽含率在阀座底部靠近出口处达到峰值;2. 入口速度更高的情况下,阀的开启速度更快,但汽含率并不一定同步上升;3. 当阀芯处于低位置时,虽然对阀门出口处影响位置较小,但其压力梯度较大、汽含率较高,选取合适的弹簧刚度非常重要。

关键词:计算流体动力学;先导式截止阀;阀芯位移; 汽蚀

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adamkowski, A., Lewandowski, M., 2015. Cavitation characteristics of shutoff valves in numerical modeling of transients in pipelines with column separation. Journal of Hydraulic Engineering, 141(2):04014077.

[2]Amirante, R., Distaso, E., Tamburrano, P., 2014. Experimental and numerical analysis of cavitation in hydraulic proportional directional valves. Energy Conversion and Management, 87:208-219.

[3]An, Y.J., Kim, B.J., Shin, B.R., 2008. Numerical analysis of 3-D flow through LNG marine control valves for their advanced design. Journal of Mechanical Science and Technology, 22(10):1998-2005.

[4]Aung, N.Z., Li, S., 2014. A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape. Energy Conversion and Management, 77:31-39.

[5]Aung, N.Z., Yang, Q., Chen, M., et al., 2014. CFD analysis of flow forces and energy loss characteristics in a flapper-nozzle pilot valve with different null clearances. Energy Conversion and Management, 83:284-295.

[6]Bernad, S.I., Susan-Resiga, R., 2012. Numerical model for cavitational flow in hydraulic poppet valves. Modelling and Simulation in Engineering, 2012:742162.

[7]Chattopadhyay, H., Kundu, A., Saha, B.K., et al., 2012. Analysis of flow structure inside a spool type pressure regulating valve. Energy Conversion and Management, 53(1):196-204.

[8]Chern, M., Hsu, P., Cheng, Y., et al., 2013. Numerical study on cavitation occurrence in globe valve. Journal of Energy Engineering, 139(1):25-34.

[9]Dossena, V., Marinoni, F., Bassi, F., et al., 2013. Numerical and experimental investigation on the performance of safety valves operating with different gases. International Journal of Pressure Vessels and Piping, 104:21-29.

[10]Fu, L., Wei, J., Qiu, M., 2008. Dynamic characteristics of large flow rating electro-hydraulic proportional cartridge valve. Chinese Journal of Mechanical Engineering (English Edition), 21(06):57-62.

[11]Fu, X., Du, X., Zou, J., et al., 2007. Characteristics of flow through throttling valve undergoing a steep pressure gradient. International Journal of Fluid Power, 8(1):29-37.

[12]Gao, H., Fu, X., Yang, H.Y., et al., 2002. Numerical investigation of cavitating flow behind the cone of a poppet valve in water hydraulic system. Journal of Zhejiang University-SCIENCE, 3(4):395-400.

[13]Gholami, H., Yaghoubi, H., Alizadeh, M., 2014. Numerical analysis of cavitation phenomenon in a vaned ring-type needle valve. Journal of Energy Engineering, 141(4):04014053.

[14]Håkansson, A., Fuchs, L., Innings, F., et al., 2012. Experimental validation of kε RANS-CFD on a high-pressure homogenizer valve. Chemical Engineering Science, 71:264-273.

[15]Jazi, A.M., Rahimzadeh, H., 2009. Waveform analysis of cavitation in a globe valve. Ultrasonics, 49(6-7):577-582.

[16]Jin, Z.J., Wei, L., Chen, L.L., et al., 2013. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(2):137-146.

[17]Mao, J., Wang, W., Zhang, J., et al., 2015. Numerical investigation on the dynamic behaviors of turbine valve disc-seat impact at low velocity. Journal of Mechanical Science and Technology, 29(2):507-515.

[18]Margot, X., Hoyas, S., Gil, A., et al., 2012. Numerical modelling of cavitation: validation and parametric studies. Engineering Applications of Computational Fluid Mechanics, 6(1):15-24.

[19]Palau-Salvador, G., Gonzalez-Altozano, P., Arviza-Valverde, J., 2008. Three-dimensional modeling and geometrical influence on the hydraulic performance of a control valve. Journal of Fluids Engineering, 130(1):011102.

[20]Qian, J.Y., Wei, L., Jin, Z.J., et al., 2014. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve. Energy Conversion and Management, 87:220-226.

[21]Saha, B.K., Chattopadhyay, H., Mandal, P.B., et al., 2014. Dynamic simulation of a pressure regulating and shut-off valve. Computers & Fluids, 101:233-240.

[22]Simic, M., Herakovic, N., 2015. Reduction of the flow forces in a small hydraulic seat valve as alternative approach to improve the valve characteristics. Energy Conversion and Management, 89:708-718.

[23]Song, X., Cui, L., Cao, M., et al., 2014. A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel. Energy Conversion and Management, 81:407-419.

[24]Valdés, J.R., Rodríguez, J.M., Monge, R., et al., 2014. Numerical simulation and experimental validation of the cavitating flow through a ball check valve. Energy Conversion and Management, 78:776-786.

[25]Yaghoubi, H., Adib, A.A., Madani, S., et al., 2015. A numerical analysis of cavitation phenomenon in a globe valve with different numbers of anti-cavitation trims. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), in press.

[26]Yang, H.Y., Pan, M., 2015. Engineering research in fluid power: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(6):427-442.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE