Full Text:   <2773>

Summary:  <1975>

CLC number: TM356

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-08-23

Cited: 1

Clicked: 4285

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chong Li

http://orcid.org/0000-0002-7485-7248

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.9 P.724-732

http://doi.org/10.1631/jzus.A1500316


Design of an ultrasonic motor with multi-vibrators


Author(s):  Chong Li, Cun-yue Lu, Yi-xin Ma, Shi-yang Li, Wei-qing Huang

Affiliation(s):  Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   lucunyue@sjtu.edu.cn

Key Words:  Ultrasonic motor (USM), Standing wave, In-plane vibration, Multi-vibrator


Chong Li, Cun-yue Lu, Yi-xin Ma, Shi-yang Li, Wei-qing Huang. Design of an ultrasonic motor with multi-vibrators[J]. Journal of Zhejiang University Science A, 2016, 17(9): 724-732.

@article{title="Design of an ultrasonic motor with multi-vibrators",
author="Chong Li, Cun-yue Lu, Yi-xin Ma, Shi-yang Li, Wei-qing Huang",
journal="Journal of Zhejiang University Science A",
volume="17",
number="9",
pages="724-732",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500316"
}

%0 Journal Article
%T Design of an ultrasonic motor with multi-vibrators
%A Chong Li
%A Cun-yue Lu
%A Yi-xin Ma
%A Shi-yang Li
%A Wei-qing Huang
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 9
%P 724-732
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500316

TY - JOUR
T1 - Design of an ultrasonic motor with multi-vibrators
A1 - Chong Li
A1 - Cun-yue Lu
A1 - Yi-xin Ma
A1 - Shi-yang Li
A1 - Wei-qing Huang
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 9
SP - 724
EP - 732
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500316


Abstract: 
This paper presents and verifies a new idea for constructing an ultrasonic motor (USM). The stator contains several vibrators fabricated by bonding piezoelectric ceramics (PZTs) to a metal base. When two alternating current (AC) voltages with a 90° phase difference are applied to the PZTs, longitudinal and bending modes are excited in the vibrator. The bending vibrations of the vibrators are stacked to form the torsional vibration of the stator, ultimately generating longitudinal-torsional composite vibration. Both vibrators and the stator are excited to the resonance state. A standing wave is formed by superposition of longitudinal and torsional modes. The proposed motor is an in-plane vibration motor because the vibrations of the stator are in the circumferential plane. The finite element method (FEM) is used to validate the feasibility of the proposed motor. The fabricated stator contains five vibrators. The tested resonance frequencies of longitudinal and torsional modes are 44.42 kHz and 43.83 kHz, respectively. The stall torque is 0.3 N·m and no-load speed is 45 r/min. The highest efficiency is 30%. The applied driving voltage is 100 Vo-p (peak voltage) at 43.9 kHz. The designed motor is a parallel-actuated integral motor. It allows the vibrators to operate synchronously, and overcomes asynchronous issues that occur in traditional multi-vibrator motors.

In this manuscript, a rotary ultrasonic motor using multi-vibrators was proposed, designed and tested. The idea for the exciting of the longitudinal-torsion hybrid vibrations is new. The FEM simulation results and the experimental results verify the feasibility of the proposed design. The proposed ultrasonic motor is suitable for miniaturizing design. It achieved higher efficiency than a previous work. This paper contains new idea, detail theoretical calculation and experiments.

一种多振子超声电机的设计

目的:对超声电机而言,当多个压电振子并联时,由于以同一设计方案制作的电机振子往往具有不同的动态特性,因此会使得多振子电机的效率有所下降。即多振子电机工作的关键是如何使多个振子协同一致地驱动转子。为提高集成型多振子电机的效率和简化电机结构,提出一种构造贴片式多振子旋转超声电机的方法。
创新点:1. 提出圆周面内驱动的概念,发展已有的面内驱动概念(x-y面);2. 提出一种模态转换方法, 通过多个振子弯曲振动的叠加形成设计电机的扭转振动;3. 电机工作时,不仅各个振子处于共振状态,而且连接而成的定子同样处于共振状态,有 利于提高电机的效率;4. 验证多振子同步驱动的机理。
方法:1. 振子采用贴片式结构,由极化方向沿厚度方向的压电陶瓷和金属基体粘结而成;与使用兰杰文振子相比,使用贴片式振子易于简化电机的结构。2. 各个振子首尾相连形成电机的定子,既可用于构造直线电机,又可转换成旋转电机。3. 通过有限元方法对不同振子数构成的电机定子进行性能比较,并且分析设计电机的驱动机理;此外,通过仿真分析确定电机的最优尺寸。4. 根据设计结果,加工原理样机,并且对加工的样机进行实验研究,探讨设计方法的可行性。
结论:1. 根据仿真分析结果,最终加工的电机定子包含5个振子。2. 定子中各个振子的振动特性完全相同,振子同步工作。3. 样机定子的内径为28 mm,外径为35 mm,高为30 mm;测得定子的纵振和扭转频率分别为44.42 kHz和43.83 kHz;当激励电压的频率为43.9 kHz、峰值为100 V时,电机的空载转速为45 r/min,堵转力矩为0.3 N·m,最大效率约为30%。4. 本文所设计的电机,是一种多振子并行驱动的整体式电机,具有结构紧凑和多振子同步工作等优点,能够克服常规的多振子电机在协同工作时出现的不同步问题;该设计方法可以为多振子电机的设计提供理论基础,推动超声电机在并行驱动方面的应用。

关键词:超声电机;驻波;面内振动;多振子

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-Budairi, H., Lucas, M., Harkness, P., 2013. A design approach for longitudinal-torsional ultrasonic transducers. Sensors and Actuators A: Physical, 198:99-106.

[2]Cheon, S.K., Jeong, S.S., Ha, Y.W., et al., 2015. Driving characteristics of an ultrasonic rotary motor consisting of four line contact type stators. Ceramics International, 41(1):S618-S624.

[3]Guo, J.F., Gong, S.J., Liu, X., et al., 2003. The study of characteristics on the L-T ultrasonic motor. Acta Acusita, 29(4):334-340 (in Chinese).

[4]He, S.Y., Chiarot, P.R., Park, S., 2011. A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(5):1049-1061.

[5]Hou, X.Y., Lee, H.P., Ong, C.J., et al., 2013. Development and numerical characterization of a new standing wave ultrasonic motor operating in the 30-40 kHz frequency range. Ultrasonics, 53(5):928-934.

[6]Jin, J.M., Wan, D.D., Yang, Y., et al., 2011. A linear ultrasonic motor using (K0.5Na0.5)NbO3 based lead-free piezoelectric ceramics. Sensors and Actuators A: Physical, 165(2):410-414.

[7]Li, X., Chen, W.S., Xie, T., et al., 2007. Novel high torque bearingless two-sided rotary ultrasonic motor. Journal of Zhejiang University-SCIENCE A, 8(5):786-792.

[8]Liu, Y.X., Liu, J.K., Chen, W.S., et al., 2012a. A rotary ultrasonic motor using radial bending mode of ring with nested PZT excitation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(3):189-196.

[9]Liu, Y.X., Chen, W.S., Feng, P., et al., 2012b. A square-type rotary ultrasonic motor with four driving feet. Sensors and Actuators A: Physical, 180:113-119.

[10]Liu, Y.X., Chen, W.S., Feng, P., et al., 2013. A rotary piezoelectric motor using bending vibrators. Sensors and Actuators A: Physical, 196:48-54.

[11]Liu, Y.X., Chen, W.S., Xu, D.M., et al., 2015. Improvement of a rectangle-shape linear piezoelectric motor with four driving feet. Ceramics International, 41(1):S594-S601.

[12]Lu, X.L., Hu, J.H., Yang, L., et al., 2013. A novel dual stator-ring rotary ultrasonic motor. Sensors and Actuators A: Physical, 189:504-511.

[13]Oh, J.H., Yuk, H.S., Lim, K.J., 2012. Study on the ring type stator design technique for a traveling wave rotary type ultrasonic motor. Japanese Journal of Applied Physics, 51(51):539-545.

[14]Park, S., He, S.Y., 2012. Standing wave brass-PZT square tubular ultrasonic motor. Ultrasonics, 52(7):880-889.

[15]Petit, L., Gonnard, P., 2009. A multilayer TWILA ultrasonic motor. Sensors and Actuators A: Physical, 149(1):113-119.

[16]Yang, L., Jin, J.M., Zhao, C.S., 2009. An ultrasonic rotary motor by using longitudinal-torsional vibration converter with holes. Journal of Vibration, Measurement & Diagnosis, 29(2):133-136 (in Chinese).

[17]Yang, X.H., Liu, Y.X., Chen, W.S., et al., 2015. Miniaturization of a longitudinal-bending hybrid linear ultrasonic motor. Ceramics International, 41(1):S607-S611.

[18]Zhao, C.S., 2010. Ultrasonic Motors Technologies and Applications. Science Press, Beijing, China.

[19]Zhu, H., Li, Z.R., Zhao, C.S., 2010. An efficient approach to optimize the vibration mode of bar-type ultrasonic motors. Ultrasonics, 50(4-5):491-495.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE