Full Text:   <2487>

Summary:  <1926>

CLC number: TU528.58

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-05-26

Cited: 1

Clicked: 4400

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

He-dong Li

http://orcid.org/0000-0002-0911-1976

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.6 P.417-426

http://doi.org/10.1631/jzus.A1600031


Rate dependence of ultra high toughness cementitious composite under direct tension


Author(s):  He-dong Li, Shi-lang Xu

Affiliation(s):  Institute of Advanced Engineering Structures and Materials, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   slxu@zju.edu.cn

Key Words:  Ultra high toughness cementitious composite (UHTCC), Rate dependence, Direct tension, Strain hardening, Multiple cracking


Share this article to: More |Next Article >>>

He-dong Li, Shi-lang Xu. Rate dependence of ultra high toughness cementitious composite under direct tension[J]. Journal of Zhejiang University Science A, 2016, 17(6): 417-426.

@article{title="Rate dependence of ultra high toughness cementitious composite under direct tension",
author="He-dong Li, Shi-lang Xu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="6",
pages="417-426",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600031"
}

%0 Journal Article
%T Rate dependence of ultra high toughness cementitious composite under direct tension
%A He-dong Li
%A Shi-lang Xu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 6
%P 417-426
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600031

TY - JOUR
T1 - Rate dependence of ultra high toughness cementitious composite under direct tension
A1 - He-dong Li
A1 - Shi-lang Xu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 6
SP - 417
EP - 426
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600031


Abstract: 
ultra high toughness cementitious composite (UHTCC) usually shows strain hardening and multiple cracking under static tension loads. In practice, structures could be exposed to high strain rates during an earthquake. Whether UHTCC can maintain its unique properties and provide high structural performance under seismic loading rates largely determines whether it can successfully fulfil its intended function. To determine the rate dependence of UHTCC, uniaxial tensile tests with strain rates ranging from 4×10−6 s−1 to 1×10−1 s−1 were conducted with thin plates. The experimental results showed that UHTCC had significant strain hardening and excellent multiple cracking properties under all the rates tested. The ultimate tensile strain lay in the range of 3.7% to 4.1% and was almost immune to the change in strain rates. The rate of 1×10−3 s−1 seemed to be a threshold for dynamic increase effects of the first crack tensile strength, elastic modulus, ultimate tensile strength, and energy absorption capability. When the strain rate was higher than the threshold, the dynamic increase effects became more pronounced. The energy absorption capability was much higher than that of concrete, and the average ultimate crack widths were controlled below 0.1 mm under all rates. Several fitting formulas were obtained based on the experimental results.

In this study, the rate dependency of UHTCC under uniaxial tension is experimentally investigated. The experimental results showed UHTCC still possessed strain hardening and good multiple cracking properties under different loading rates. It is found that the loading rate has little effect on the ultimate tensile strain, but when the strain rate is larger than 10-3 s-1, the loading rate effect becomes more pronounced. This study provides some valuable reference for design of structures with UHTCC like materials under dynamic loading conditions.

超高韧性水泥基复合材料直接拉伸特性应变率效应研究

目的:水泥基材料的拉伸性能会随着荷载速率的变化而变化。本文旨在探讨加载速率为4×10-6~ 1×10-1 s-1时,超高韧性水泥基复合材料直接拉伸初裂抗拉强度、初裂抗拉应变、弹性模量、极限抗拉应变、极限抗拉强度、多缝开裂特性和耗能能力的变化规律,为超高韧性水泥基复合材料在抗震工程中的应用提供必要的科学依据和参考。
创新点:1. 通过直接拉伸试验较为全面地测定超高韧性水泥基复合材料在4×10-6~1×10-1 s-1应变速率范围内的直接拉伸性能;2. 建立适宜的拟合方程,可直观反映多种直接拉伸性能指标随应变率的变化规律。
方法:1. 通过直接拉伸试验,确定加载速率对超高韧性直接拉伸特性的影响(图2和4);2. 通过对实验结果的拟合,简单直观地反映应变率对拉伸弹性模量、初裂抗拉强度和极限抗拉强度的影响规律(图3、5和7)。
结论:基于超高韧性水泥基复合材料薄板直接拉伸试验,当应变速率在4×10-6~1×10-1 s-1的范围内变化时:1. 材料的初裂抗拉强度、初裂抗拉应变、拉伸弹性模量、极限抗拉强度和耗能能力都具有应变速率敏感性,其中除初裂抗拉应变随应变率升高而减小外,其它几项性能指标都显示出明显的动态强化效应;2. 多缝开裂模式和极限抗拉应变对应变率不敏感,极限裂缝宽度始终在100 μm以内,极限抗拉应变保持在3.7%左右;3. 应变率对初裂抗拉强度、拉伸弹性模量、极限抗拉强度和耗能能力的动态增强效应都存在一个阈值(皆在1×10-3 s-1附近),在应变率达到阈值之后,动态效应才更加显著;4. 超高韧性水泥基复合材料具有明显优于混凝土的耗能能力,在地震荷载(对应应变率在1×10-4~1×10-2 s-1)作用下其耗能能力可达C20混凝土的1000倍。

关键词:超高韧性水泥基复合材料;率效应;直接拉伸;应变硬化;多缝开裂

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Boshoff, W.P., van Zijl, G.P.A.G., 2007. Time-dependent response of ECC: characterisation of creep and rate dependence. Cement and Concrete Research, 37(5):725-734.

[2]Douglas, K.S., Billington, S.L., 2011. Strain rate dependence of HPFRCC cylinders in monotonic tension. Materials and Structures, 44(1):391-404.

[3]Fischer, G., 2002. Behavior of Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions. PhD Thesis, University of Michigan, Michigan, USA.

[4]Fischer, G., Li, V.C., 2002. Influence of matraix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites (ECC). Structural Journal, 99(1):104-111.

[5]Li, H., Xu, S., 2011. Determination of energy consumption in the fracture plane of ultra high toughness cementitious composite with direct tension test. Engineering Fracture Mechanics, 78(9):1895-1905.

[6]Li, V.C., 1997. Damage tolerance of engineered cementitious composites. Proceedings of the 9th International Conference of Fracture, Sydney, Australia. Pergamon, Oxford, UK, p.619-630.

[7]Li, V.C., Leung, C.K.Y., 1992. Steady state and multiple cracking of short random fiber composites. Journal of Engineering Mechanics, 118(11):2246-2264.

[8]Li, V.C., Hashida, T., 1993. Engineering ductile fracture in brittle matrix composites. Journal of Materials Science Letters, 12(12):898-901.

[9]Li, V.C., Kanda, T., 1998. Innovations forum: engineered cementitious composites for structural applications. Journal of Materials in Civil Engineering, 10(2):66-69.

[10]Maalej, M., Quek, S.T., Zhang, J., 2005. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact. Journal of Materials in Civil Engineering, 17(2):143-152.

[11]Malvar, L.J., Ross, C.A., 1998. Review of strain rate effects for concrete in tension. Materials Journal, 95(6):735-739.

[12]Mechtcherine, V., Silva, F.A., Butler, M., et al., 2011. Behavior of strain-hardening cement-based composites under high strain rates. Journal of Advanced Concrete Technology, 9(1):51-62.

[13]Reinhardt, H.W., 1985. Strain rate effects on the tensile strength of concrete as predicted by thermodynamic and fracture mechanics models. Materials Research Society Symposia Proceedings, 64:1-13.

[14]Ross, C.A., Tedesco, J.W., Kuennen, S.T., 1995. Effects of strain rate on concrete strength. Materials Journal, 92(1):37-47.

[15]Rossi, P., van Mier, J.G.M., Toutlemonde, F., et al., 1994. Effect of loading rate on the strength of concrete subjected to uniaxial tension. Materials and Structures, 27(5):260-264.

[16]Xiao, S.Y., Lin, G., Wang, Z., et al., 2001. Effects of strain rate on dynamic behavior of concrete in tension. Journal of Dalian University of Technology, 41(6):721-725 (in Chinese).

[17]Xu, S., Li, H., 2009. Uniaxial tensile experiments of ultra high toughness cementitious composite. China Civil Engineering Journal, 42(9):32-41 (in Chinese).

[18]Xu, S., Cai, X., 2010. Experimental study and theoretical models on compressive properties of ultrahigh toughness cementitious composites. Journal of Materials in Civil Engineering, 22(10):1067-1077.

[19]Yan, D., Lin, G., Wang, Z., et al., 2005. A study on direct tensile properties of concrete at different strain rates. China Civil Engineering Journal, 38(6):97-103 (in Chinese).

[20]Yang, E., Li, V.C., 2006. Rate dependences in engineered cementitious composite. In: Fischer, G., Li, V.C. (Eds.), International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. RILEM Publications SARL, Bagneux, France, p.83-92.

[21]Yang, E., Li, V.C., 2012. Tailoring engineered cementitious composites for impact resistance. Cement and Concrete Research, 42(8):1066-1071.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE