Full Text:   <1023>

Summary:  <339>

CLC number: TU33

On-line Access: 2016-06-03

Received: 2015-03-12

Revision Accepted: 2015-08-28

Crosschecked: 2016-05-09

Cited: 0

Clicked: 1906

Citations:  Bibtex RefMan EndNote GB/T7714


Gianpaolo Perrella


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.6 P.427-442


Design procedure for thin three-layer plates made of a depleted material

Author(s):  Gianpaolo Perrella, Giovanni Maria Montuori, Massimiliano Fraldi, Elena Mele

Affiliation(s):  Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples 80125, Italy

Corresponding email(s):   gianpaolo.perrella@unina.it

Key Words:  Thin plates, Multilayered plates, Depleted materials, Homogenization method, Stiffness design

Gianpaolo Perrella, Giovanni Maria Montuori, Massimiliano Fraldi, Elena Mele. Design procedure for thin three-layer plates made of a depleted material[J]. Journal of Zhejiang University Science A, 2016, 17(6): 427-442.

@article{title="Design procedure for thin three-layer plates made of a depleted material",
author="Gianpaolo Perrella, Giovanni Maria Montuori, Massimiliano Fraldi, Elena Mele",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Design procedure for thin three-layer plates made of a depleted material
%A Gianpaolo Perrella
%A Giovanni Maria Montuori
%A Massimiliano Fraldi
%A Elena Mele
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 6
%P 427-442
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500051

T1 - Design procedure for thin three-layer plates made of a depleted material
A1 - Gianpaolo Perrella
A1 - Giovanni Maria Montuori
A1 - Massimiliano Fraldi
A1 - Elena Mele
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 6
SP - 427
EP - 442
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500051

The efficiency of a long-span structure relies on how material is locally distributed within a fixed structural shape. In this paper a design procedure for thin plates made of three layers of a depleted material subject to a distributed vertical load is proposed. The investigation is driven by the idea of the optimal material organization and has the objective of maximizing the overall stiffness/weight ratio of the structure. Two microstructural architectures of the media are considered: a porous solid structure and a truss arrangement. For each type of microstructure the flexural stiffness has been correlated to the level of depletion by the use of a power law function by setting very few parameters. Finally, invoking the principles of structural homogenization theory, the global flexural response of the plate has also been calculated. The validity of the method is demonstrated by comparing the analytical results with those obtained by a numerical finite element simulation of the structure based on a detailed model of the media.

The paper presents an investigation on design procedure for thin three layers plates made of a depleted material. The background and application of this structural form is well presented. The proposed design procedure is well described with calculation model and verified with finite element analysis.


创新点:1. 对于水立方这种复杂的空间多面体网格结构,本文将其理想化为连续的中空介质,利用微观力学中的均质化分析方法,将结构分解为多个基本单元(RVE)进行分析,从而推导出结构性能指标与单元参数之间的关系。2. 对于大跨度平板结构,本文提出一种基于RVE重复叠加组合的设计方法,并利用有限元法对该方法进行检验。
方法:1. 对夹层平板结构的弯曲特性进行理论分析,根据Kirchhoff-Love理论,得到板弯曲刚度与各层的截面惯性矩之间的关系;2. 通过理论推导出结构弯曲刚度(图3)、材料使用量(图4)随层厚度和层密度的变化关系;3. 从基本单元出发,利用均质化分析方法分别对中空立方体(图5)和空间桁架结构(图6)进行分析,得到结构抗弯刚度随单元中空程度和距截面中性轴距离的函数关系(图7和8),进而推导出结构参数化设计的拟合公式;4. 利用该设计公式,针对一个90 m×90 m×2.5 m的平板结构,以跨中挠度为跨度的1/500为设计指标,分别设计由两种基本单元组成的夹层平板结构,并将结构挠度的有限元计算结果与设计指标进行比较(图12)。
结论:1. 本文提出的利用中空单元组成的夹层平板结构的设计方法,通过优化设计中空单元的各项参数,可以在保证性能指标的同时最大化降低结构质量,得到最优刚度质量比。2. 本设计方法和有限元法得到的结果之间差异非常小,说明该设计方法准确可靠。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ariga, K., Yamauchi, Y., Rydzek, G., et al., 2014. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chemistry Letters, 43(1):36-68.

[2]Bendsøe, M.P., Sigmund, O., 2003. Topology Optimization: Theory, Methods, and Applications. Springer, Berlin, Germany.

[3]Chilton, J., 2000. Space Grid Structures. Architectural Press, Boston, USA.

[4]Emmerich, D.G., 1994. Portée infinie, poids nul. Le Carré Bleu, 37(2):1-3.

[5]Evans, A.G., 2001. Lightweight materials and structures. MRS Bulletin, 26(10):790-797.

[6]Evans, A.G., Hutchinson, J.W., Fleck, N.A., et al., 2001. The topological design of multifunctional cellular metals. Progress in Materials Science, 46(3-4):309-327.

[7]Fuller, R.B., 1982. SYNERGETICS: Explorations in the Geometry of Thinking. Macmillan Publishing Company, New York, USA.

[8]Gibson, L.J., Ashby, M.F., 1988. Cellular Solids: Structure and Properties. Pergamon Press, Oxford, UK.

[9]Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2):127-140.

[10]Hild, F., Billardon, R., Beranger, A., 1996. Fatigue failure maps of heterogeneous materials. Mechanics of Materials, 22(1):11-21.

[11]Hill, D., 2008. The New Engineering: a Discussion with Arup’s Tristram Carfrae. City of Sound. Available from www.cityofsound.com/blog/2008/03/this-discussion.html [Accessed on Feb. 5, 2015].

[12]Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 11(5):357-372.

[13]Hyde, S.T., 2010. Contemporary geometry for the built design Architectural Theory Review, 15(2):110-124.

[14]Ito, T., 2012. Forces of Nature. Princeton Architectural Press, New York, USA.

[15]McClearly, P., 1998. Robert Le Ricolais’ search for the “Indestructible Idea”. Lotus International, 99:102-131.

[16]Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of Heterogeneous Materials, Second Edition. North-Holland, Amsterdam, the Netherlands.

[17]Sandaker, B.N., 2008. On Span and Space: Exploring Structures in Architecture. Routledge, London, UK.

[18]Snelson, K., 2012. The art of tensegrity. International Journal of Space Structures, 27(2-3):71-80.

[19]Spuybroek, L., 2008. The Architecture of Continuity: Essays and Conversations. V2_Publishing, Rotterdam, the Netherlands.

[20]Timoshenko, S., 1936. Theory of plate and shells. McGraw-Hill Book Company, New York, USA.

[21]Toreno, M., Fraldi, M., Giordano, A., et al., 2011. Bubble-frame: assessment of a new structural typology starting from the Water Cube. Proceeding of Structural Engineers World Congress, Como, Italy.

[22]Turner, C.H., Cowin, S.C., 1987. Dependence of elastic constants of an anisotropic porous material upon porosity and fabric. Journal of Materials Science, 22(9):3178-3184.

[23]Weinstock, M., 2006. Self-organisation and material constructions. Architectural Design, 76(2):34-41.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE