Full Text:   <557>

Summary:  <301>

CLC number: TU433

On-line Access: 2016-07-05

Received: 2016-04-07

Revision Accepted: 2016-06-27

Crosschecked: 2016-06-28

Cited: 0

Clicked: 1448

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jie Xu

http://orcid.org/0000-0003-3841-7242

Chao Zhou

http://orcid.org/0000-0002-9443-6707

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.7 P.589-596

http://doi.org/10.1631/jzus.A1600300


A simple model for the hysteretic elastic shear modulus of unsaturated soils


Author(s):  Jie Xu, Chao Zhou

Affiliation(s):  Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; more

Corresponding email(s):   czhou@connect.ust.hk

Key Words:  Unsaturated soil, Modeling, Elastic shear modulus, Small strain, Suction, Degree of saturation


Share this article to: More <<< Previous Article|

Jie Xu, Chao Zhou. A simple model for the hysteretic elastic shear modulus of unsaturated soils[J]. Journal of Zhejiang University Science A, 2016, 17(7): 589-596.

@article{title="A simple model for the hysteretic elastic shear modulus of unsaturated soils",
author="Jie Xu, Chao Zhou",
journal="Journal of Zhejiang University Science A",
volume="17",
number="7",
pages="589-596",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600300"
}

%0 Journal Article
%T A simple model for the hysteretic elastic shear modulus of unsaturated soils
%A Jie Xu
%A Chao Zhou
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 7
%P 589-596
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600300

TY - JOUR
T1 - A simple model for the hysteretic elastic shear modulus of unsaturated soils
A1 - Jie Xu
A1 - Chao Zhou
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 7
SP - 589
EP - 596
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600300


Abstract: 
Considering the great importance of the elastic shear modulus G0 of unsaturated soils to the serviceability of many geo-structures in geo-energy and geo-environmental engineering, some semi-empirical models have been reported for the G0 of unsaturated soils. Existing models require at least three parameters and the calibration of the model parameters requires extensive time-consuming unsaturated soil tests. In this study, a simple semi-empirical model is proposed for the hysteretic G0 of unsaturated soils, requiring only two parameters. The constitutive variables of the mean Bishop’s stress and a bonding variable are adopted for considering the average stress between soil particles and the additional normal forces between soil particles provided by water menisci. The derived equation is applied to simulate the G0 of unsaturated silts and sands. Comparisons between the measured and calculated results demonstrate that the proposed equation is able to describe the influences of various factors on G0, including mean net stress, suction, wetting-drying, and void ratio.

考虑滞回效应的非饱和土弹性剪切模量简化模型

目的:非饱和土的弹性剪切模量是预测土体变形和土工建筑物正常使用服役性能的重要参数之一。本文旨在提出一个描述非饱和土弹性剪切模量的简化模型,减少标定模型参数所需要的耗时非饱和土试验,并考虑吸力、应力、干湿循环及孔隙比对弹性剪切模量特性的影响。
创新点:1. 提出考虑滞回效应的非饱和土弹性剪切模量简化模型;2. 减少标定模型参数所需要的试验。
方法:1. 基于前人非饱和土弹性剪切模量试验结果,考虑非饱和土中土颗粒间的平均骨架应力及毛细水提供的法向应力作用,通过理论推导建立非饱和土弹性剪切模量的半经验简化模型;2. 通过文献中不同非饱和粉土及砂土的弹性剪切模量试验结果验证简化模型的适用性。
结论:1. 得到一个描述非饱和土弹性剪切模量的简化模型,该模型仅需两个模型参数,减少了标定模型参数所需要的耗时非饱和土试验;2. 通过四组不同非饱和土弹性剪切模量试验数据验证了简化模型的适用性,表明该模型能考虑吸力、应力、干湿循环以及孔隙比对弹性剪切模量特性的影响;3. 由于进行了简化,该模型可能存在少量预测误差,在宽应力和吸力范围内运用该模型时需要谨慎。

关键词:非饱和土;理论模型;弹性剪切模量;小应变;吸力;饱和度

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Atkinson, J.H., Sallfors, G., 1991. Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests. Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 3:915-956.

[2]Biglari, M., Mancuso, C., d'Onofrio, A., et al., 2011. Modelling the initial shear stiffness of unsaturated soils as a function of the coupled effects of the void ratio and the degree of saturation. Computers and Geotechnics, 38(5):709-720.

[3]Dong, Y., Lu, N., 2016. Correlation between small-strain shear modulus and suction stress in capillary regime under zero total stress conditions. Journal of Geotechnical and Geoenvironmental Engineering, 04016056.

[4]Dong, Y., Lu, N., McCartney, J.S., 2016. Unified model for small-strain shear modulus of variably saturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 04016039.

[5]Fisher, R.A., 1926. On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines. The Journal of Agricultural Science, 16(03):492-505.

[6]Gallipoli, D., Gens, A., Sharma, R., et al., 2003. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique, 53(1):123-135.

[7]Hardin, B., Black, W., 1966. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, 92(SM2):27-42.

[8]Jardine, R.J., 2011. Characterization of mudrocks: a practical application of advanced laboratory testing. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(1):1-14.

[9]Khosravi, A., McCartney, J.S., 2012. Impact of hydraulic hysteresis on the small-strain shear modulus of low plasticity soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(11):1326-1333.

[10]Mancuso, C., Vassallo, R., d'Onofrio, A., 2002. Small strain behavior of a silty sand in controlled-suction resonant column torsional shear tests. Canadian Geotechnical Journal, 39(1):22-31.

[11]McDowell, G., Bolton, M., 2001. Micro mechanics of elastic soil. Soils and Foundations, 41(6):147-152.

[12]Ng, C.W.W., Yung, S.Y., 2008. Determination of the anisotropic shear stiffness of an unsaturated decomposed soil. Géotechnique, 58(1):23-35.

[13]Ng, C.W.W., Xu, J., Yung, S.Y., 2009. Effects of wetting-drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains. Canadian Geotechnical Journal, 46(9):1062-1076.

[14]Nyunt, T., Leong, E., Rahardjo, H., 2011. Strength and small-strain stiffness characteristics of unsaturated sand. Geotechnical Testing Journal, 34(5):551-561.

[15]Oh, W.T., Vanapalli, S.K., 2014. Semi-empirical model for estimating the small-strain shear modulus of unsaturated non-plastic sandy soils. Geotechnical and Geological Engineering, 32(2):259-271.

[16]Oztoprak, S., Bolton, M.D., 2013. Stiffness of sands through a laboratory test database. Géotechnique, 63(1):54-70.

[17]Sawangsuriya, A., Edil, T.B., Bosscher, P.J., 2009. Modulus-suction-moisture relationship for compacted soils in postcompaction state. Journal of Geotechnical and Geoenvironmental Engineering, 135(10):1390-1403.

[18]Shibuya, S., Hwang, S., Mitachi, T., 1997. Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3):593-601.

[19]Wheeler, S.J., Karube, D., 1996. Constitutive modelling. Proceedings of the First International Conference on Unsaturated Soil, Paris, France, 3:1323-1356.

[20]Wong, K.S., Mašín, D., Ng, C.W.W., 2014. Modelling of shear stiffness of unsaturated fine grained soils at very small strains. Computers and Geotechnics, 56:28-39.

[21]Zhou, C., Ng, C.W.W., Chen, R., 2015. A bounding surface plasticity model for unsaturated soil at small strains. International Journal for Numerical and Analytical Methods in Geomechanics, 39(11):1141-1164.

[22]Zhou, Y.G., Chen, Y.M., Asaka, Y., et al., 2008. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils. Journal of Zhejiang University-SCIENCE A, 9(11):1490-1496.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE