Full Text:   <2650>

Summary:  <1949>

CLC number: U213.71

On-line Access: 2017-08-04

Received: 2017-02-21

Revision Accepted: 2017-04-24

Crosschecked: 2017-07-07

Cited: 0

Clicked: 4734

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jie-ling Xiao

http://orcid.org/0000-0002-4692-7464

Hao Liu

http://orcid.org/0000-0002-6151-9805

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.8 P.648-659

http://doi.org/10.1631/jzus.A1700058


Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading


Author(s):  Jie-ling Xiao, Hao Liu, Jing-mang Xu, Ping Wang, Gan-zhong Liu, Rong Chen

Affiliation(s):  MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China; more

Corresponding email(s):   liuhao@my.swjtu.edu.cn

Key Words:  Granular ballast bed, Displacement amplitude, Cyclic loading, Longitudinal resistance


Jie-ling Xiao, Hao Liu, Jing-mang Xu, Ping Wang, Gan-zhong Liu, Rong Chen. Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading[J]. Journal of Zhejiang University Science A, 2017, 18(8): 648-659.

@article{title="Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading",
author="Jie-ling Xiao, Hao Liu, Jing-mang Xu, Ping Wang, Gan-zhong Liu, Rong Chen",
journal="Journal of Zhejiang University Science A",
volume="18",
number="8",
pages="648-659",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700058"
}

%0 Journal Article
%T Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading
%A Jie-ling Xiao
%A Hao Liu
%A Jing-mang Xu
%A Ping Wang
%A Gan-zhong Liu
%A Rong Chen
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 8
%P 648-659
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700058

TY - JOUR
T1 - Longitudinal resistance performance of granular ballast beds under cyclic symmetric displacement loading
A1 - Jie-ling Xiao
A1 - Hao Liu
A1 - Jing-mang Xu
A1 - Ping Wang
A1 - Gan-zhong Liu
A1 - Rong Chen
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 8
SP - 648
EP - 659
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700058


Abstract: 
The longitudinal resistance performance of a granular ballast bed under cyclic symmetric displacement loading was studied based on a full-scale test model of ballast track structures. The change law of the longitudinal resistance characteristics of the ballast bed under variable displacement amplitudes was analyzed. The results show that: the resistance-displacement curves of a granular ballast bed are a set of closed hysteretic curves, indicating obvious energy consumption; a granular ballast bed softens gradually during the cyclic process with constant displacement amplitude, and the residual deformation rate increases nonlinearly with increasing cycle number; the peak value of the longitudinal resistance of lines decreases with increasing cycle number; the cyclic softening of a granular ballast bed is dependent on the displacement amplitude–the higher the displacement, the more severe the cyclic softening will become; after cyclic displacement loading is applied several times, the longitudinal resistance of the bed will degenerate obviously, and the higher the displacement amplitude, the higher the longitudinal resistance attenuation rate of the ballast bed will become.

The manuscript presents undeniably an interesting study in the area of ballasted railways. The study has practical significance. The abstract and conclusions contain primary findings of the study. The manuscript is adequately structured.

散粒体道床在对称位移循环加载下的纵向阻力性能

目的:研究散粒体道床在纵向反复荷载下的阻力性能及变化规律是深入理解有砟轨道无缝线路动态服役性能和辨识无缝线路在循环荷载作用下的受力变形机理的基础。本文旨在利用室内足尺试验模型及专用加载系统,分析散粒体道床受循环位移荷载时的纵向阻力性能,探索不同位移加载幅值对有砟道床纵向阻力的影响。
创新点:1. 利用有砟轨道结构足尺试验模型及循环加载装置,测试循环荷载下的道床纵向阻力-位移滞回曲线;2. 根据循环加载试验曲线,构建滞回模型,刻划散粒体道床的纵向承载和传力性能。
方法:1. 通过试验分析,得到散粒体道床在周期性荷载作用下的力-位移曲线(图6、8和10); 2. 基于试验数据,分析散粒体道床在周期性荷载下的滞回准则,得到不同位移幅值下滞回曲线的演化规律(图7、9和11);3. 通过图像识别技术,对周期性荷载作用下道砟颗粒的运动规律进行分析,从散粒体道床的细观作用机理分析宏观力学表现(图16~18)。
结论:1. 散粒体道床在循环往复荷载下的纵向阻力-位移曲线为一条封闭的滞回曲线,且存在明显的耗能现象;2. 在位移幅值保持不变的循环过程中,散粒体道床表现出一种循环软化行为;3. 位移幅值不同,道床纵向阻力的衰减率不同,且位移越大,退化效应越明显。

关键词:散粒体道床;位移幅值;循环加载;纵向阻力

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anderson, W.F., Fair, P., 2008. Behaviour of railroad ballast under monotonic and cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(3):316-327. https://doi.org/10.1061/(asce)1090-0241(2008)134:3(316)

[2]Chen, R., Wang, P., Wei, X.K., 2013. Track-bridge longitudinal interaction of continuous welded rails on arch bridge. Mathematical Problems in Engineering, 2013:494137.

[3]Esveld, C., 2001. Modern Railway Track. MRT Press, the Netherlands.

[4]Han, J., Zhao, G.T., Xiao, X.B., et al., 2015. Effect of softening of cement asphalt mortar on vehicle operation safety and track dynamics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(12):976-986.

[5]Hayano, K., Koike, Y., Nakamura, T., et al., 2014. Effects of sleeper shape on lateral resistance of railway ballasted tracks. Proceedings of the Geo-Shanghai International Conference, p.491-499.

[6]Hayashikawa, T., Abdel Raheem, S.E., Hashimoto, I., 2004. Nonlinear seismic response of soil-foundation-structure interaction model of cable-stayed bridges tower. 13th World Conference on Earthquake Engineering, No. 3045.

[7]Indraratna, B., Salim, W., 2005. Mechanics of Ballasted Rail Tracks: a Geotechnical Perspective. Taylor and Francis/ Balkema, London, UK.

[8]Indraratna, B., Thakur, P.K., Vinod, J.S., 2010. Experimental and numerical study of railway ballast behavior under cyclic loading. International Journal of Geomechanics, 10(4):136-144.

[9]Indraratna, B., Nimbalkar, S., Neville, T., 2014a. Performance assessment of reinforced ballasted rail track. Proceedings of the Institution of Civil Engineers-Ground Improvement, 167(1):24-34.

[10]Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., 2014b. From theory to practice in track geomechanics–Australian perspective for synthetic inclusions. Transportation Geotechnics, 1(4):171-187.

[11]Jing, G.Q., 2012. Railway Ballast Bed. China Railway Publishing House, Beijing, China (in Chinese).

[12]Kennedy, J., 2011. A Full-scale Laboratory Investigation into Railway Track Substructure Performance Ballast Reinforcement. PhD Thesis, Heriot-Watt University, Edinburgh, UK.

[13]Kerokoski, O., 2010. Determination of longitudinal and transverse railway track resistance. Joint Rail Conference, p.157-165.

[14]Le Pen, L., 2008. Track Behaviour: the Importance of the Sleeper to Ballast Interface. PhD Thesis, University of Southampton, Southampton, UK.

[15]Le Pen, L., Powrie, W., 2011. Contribution of base, crib and shoulder ballast to the lateral sliding resistance of railway track: a geotechnical perspective. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(2):113-128.

[16]Le Pen, L., Bhandari, A.R., Powrie, W., 2014. Sleeper end resistance of ballasted railway tracks. Journal of Geotechnical and Geoenvironmental Engineering, 140(5):04014004.

[17]Lim, W.L., 2004. Mechanics of Railway Ballast Behaviour. PhD Thesis, University of Nottingham, Nottingham, UK.

[18]Mamou, A., Powrie, W., Priest, J.A., et al., 2017. The effects of drainage on the behaviour of railway track foundation materials during cyclic loading. Géotechnique, 68(4):1-10.

[19]MOR (Ministry of Railways of the People’s Republic of China), 2008. Railway Ballast, TB/T 2140-2008. MOR, China (in Chinese).

[20]Nimbalkar, S., Indraratna, B., 2016. Improved performance of ballasted rail track using geosynthetics and rubber shockmat. Journal of Geotechnical and Geoenvironmental Engineering, 142(8):04016031.

[21]Nurmikolu, A., 2012. Key aspects on the behaviour of the ballast and substructure of a modern railway track: research-based practical observations in Finland. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(11):825-835.

[22]Ruge, P., Birk, C., 2007. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track bridge interaction. Computers & Structures, 85(7-8):458-475.

[23]Shi, Y.J., Wang, M., Wang, Y.Q., 2011. Experimental and constitutive model study of structural steel under cyclic loading. Journal of Constructional Steel Research, 67(8):1185-1197.

[24]Sung, W., Shih, M., Lin, C., 2005. The critical loading for lateral buckling of continuous welded rail. Journal of Zhejiang University-SCIENCE, 6A(8):878-885.

[25]UIC (International Union of Railways), 2001. Track/Bridge Interaction Recommendations for Calculations, UIC 774-3E. International Union of Railways, Paris, France.

[26]Wang, Z.G., Jing, G.Q., Yu, Q.F., et al., 2015. Analysis of ballast direct shear tests by discrete element method under different normal stress. Measurement, 63:17-24.

[27]Yan, B., Dai, G.L., 2014. Analysis of interaction between continuously-welded rail and high-speed railway bridges considering loading-history. Journal of the China Railway Society, 36(6):75-80 (in Chinese).

[28]Zakeri, J.A., Barati, M., 2015. Utilizing the track panel displacement method for estimating vertical load effects on the lateral resistance of continuously welded railway track. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229(3):262-267.

[29]Zhou, D.P., 1995. Rheological Mechanics and Application in Geotechnical Engineering. Southwest Jiaotong University Press, Chengdu, China (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE