Full Text:   <839>

Summary:  <182>

CLC number: TH16

On-line Access: 2018-06-04

Received: 2017-08-15

Revision Accepted: 2017-09-14

Crosschecked: 2018-05-09

Cited: 0

Clicked: 1347

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi Chao Ong

https://orcid.org/0000-0002-1686-3551

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.6 P.452-460

http://doi.org/10.1631/jzus.A1700431


Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation


Author(s):  Zhi Chao Ong, Hong Cheet Lim, Anders Brandt

Affiliation(s):  Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; more

Corresponding email(s):   alexongzc@um.edu.my

Key Words:  Auto impact device, Frequency response function (FRF), Impact-synchronous time averaging, Manual impact hammer, Phase synchronization


Zhi Chao Ong, Hong Cheet Lim, Anders Brandt. Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation[J]. Journal of Zhejiang University Science A, 2018, 19(6): 452-460.

@article{title="Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation",
author="Zhi Chao Ong, Hong Cheet Lim, Anders Brandt",
journal="Journal of Zhejiang University Science A",
volume="19",
number="6",
pages="452-460",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700431"
}

%0 Journal Article
%T Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation
%A Zhi Chao Ong
%A Hong Cheet Lim
%A Anders Brandt
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 6
%P 452-460
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700431

TY - JOUR
T1 - Automated impact device with non-synchronous impacts: a practical solution for modal testing during operation
A1 - Zhi Chao Ong
A1 - Hong Cheet Lim
A1 - Anders Brandt
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 6
SP - 452
EP - 460
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700431


Abstract: 
Previous study has shown that synchronization of phases between impacts and the cyclic load component should be avoided to improve the effectiveness of operational modal testing, i.e. impact-synchronous modal analysis in obtaining a cleaner frequency response function (FRF) estimation with fewer number of averages. However, avoiding the phase synchronization effect is rarely achievable with the current manual impact hammer because of the lack of control of the impact timing. We investigate how to improve FRF estimation in the presence of harmonic disturbances, such as those present in operating rotating machines. An auto impact device is therefore introduced to replace the manual impact hammer. This device ensures that impact intervals can be applied at non-synchronous instances with respect to the harmonic disturbance. We demonstrate that this new device is a viable option for operational modal testing. It allows significant improvement in FRF estimation and shows good correlation of modal extraction data with benchmark experimental modal analysis results.

实现异步冲击的自动冲击装置: 一种针对操作过程中模态测试的实用方案

目的:目前手动冲击锤设备缺乏对冲击时间的控制,容易引起冲击相位和周期荷载的周期性响应的相位同步问题. 本文旨在通过使用异步自动冲击激励的自动冲击装置代替同步冲击模态分析中传统手动冲击锤的方法来解决上述问题.
创新点:1. 引入具有可调冲击参数的自动冲击装置; 2. 该装置可通过控制施加冲击的时间步来确保冲击和来自循环载荷组件的响应异步; 3. 当周期性响应的相位与装置所施加的冲击信号不一致时,加速响应中未知力源的影响会被降到最小.
方法:1. 分别使用数字方波信号的波峰和波谷来控制自动冲击装置的"开"和"关"状态; 2. 通过调控样本大小(1024个)、采样率(50 000个/秒)、占空比(0.5%)和冲击频率(97.78 Hz)(或周期)等参数得到不同的冲击图形.
结论:1. 使用可实现异步冲击的自动冲击装置可以估算第3阶自然模态; 2. 前3种自然模态可以被成功确定并与基准实验模态分析结果具有良好的相关性,表现为低于1.67%的自然频率差异,1.79%~12.54%的阻尼比差异以及介于0.893和0.925之间的模态置信度. 3. 针对谐波干扰对相位的影响,相比于使用手动冲击锤来增强频率响应函数估计和模态提取数据,使用可实现异步冲击的自动冲击装置是一种更可行的选择.

关键词:自动冲击装置;频率响应函数;冲击同步时间均值;手动冲击锤;相位同步

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Avitabile P, 2001. Experimental modal analysis—a simple non-mathematical presentation. Sound and Vibration, 35(1):20-31.

[2]Cakir F, Uysal H, 2015. Experimental modal analysis of brick masonry arches strengthened prepreg composites. Journal of Cultural Heritage, 16(3):284-292.

[3]Cunha A, Caetano E, 2006. Experimental modal analysis of civil engineering structures. Sound and Vibration, 40(6):12-20.

[4]Dziedziech K, Staszewski WJ, Uhl T, 2015. Wavelet-based modal analysis for time-variant systems. Mechanical Systems and Signal Processing, 50-51:323-337.

[5]Ewins DJ, 1984. Modal Testing: Theory and Practice. Research Studies Press, Letchworth, UK.

[6]Fayyadh MM, Razak HA, 2013. Damage identification and assessment in RC structures using vibration data: a review. Journal of Civil Engineering and Management, 19(3):375-386.

[7]Fransen S, Rixen D, Henriksen T, et al., 2011. On the operational modal analysis of solid rocket motors. In: Proulx T (Ed.), Structural Dynamics, Volume 3. Springer, New York, USA, p.453-463.

[8]Garcia-Perez A, Amezquita-Sanchez JP, Dominguez-Gonzalez A, et al., 2013. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(9):615-630.

[9]Hashim H, Ibrahim Z, Razak HA, 2013. Dynamic characteristics and model updating of damaged slab from ambient vibration measurements. Measurement, 46(4):1371-1378.

[10]Loh SK, Faris WF, Hamdi M, et al., 2011. Vibrational characteristics of piping system in air conditioning outdoor unit. Science China—Technological Sciences, 54(5):1154-1168.

[11]Mohanty P, Rixen DJ, 2004. Operational modal analysis in the presence of harmonic excitation. Journal of Sound and Vibration, 270(1-2):93-109.

[12]Ong ZC, Lee CC, 2015. Investigation of impact profile and isolation effect in automated impact device design and control for operational modal analysis. Journal of Dynamic Systems Measurement and Control, 137(9):094504.

[13]Ong ZC, Lim HC, Khoo SY, et al., 2016. An experimental investigation on the effects of exponential window and impact force level on harmonic reduction in impact-synchronous modal analysis. Journal of Mechanical Science and Technology, 30(8):3523-3532.

[14]Ong ZC, Lim HC, Khoo SY, et al., 2017. Assessment of the phase synchronization effect in modal testing during operation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):92-105.

[15]Rahman AGA, Ismail Z, Noroozi S, et al., 2014. Enhancement of impact-synchronous modal analysis with number of averages. Journal of Vibration and Control, 20(11):1645-1655.

[16]Thomson WT, 1983. Theory of Vibration with Applications. Allen & Unwin, London, UK.

[17]Wang H, Zou KG, Li AQ, et al., 2010. Parameter effects on the dynamic characteristics of a super-long-span triple-tower suspension bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(5):305-316.

[18]William TT, Marie DD, 1998. Theory of Vibration with Applications. Prentice Hall, New Jersey, USA.

[19]Xu YL, Zhang XH, Zhu SY, et al., 2016. Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges. Science Bulletin, 61(4):313-329.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE