Full Text:   <2821>

Summary:  <1921>

CLC number: TU473.1

On-line Access: 2018-08-03

Received: 2017-08-29

Revision Accepted: 2018-01-10

Crosschecked: 2018-07-09

Cited: 0

Clicked: 5574

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Huai-feng Peng

https://orcid.org/0000-0002-9357-4307

Gang-qiang Kong

https://orcid.org/0000-0002-0645-5140

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.8 P.638-649

http://doi.org/10.1631/jzus.A1700460


Thermo-mechanical behaviour of floating energy pile groups in sand


Author(s):  Huai-feng Peng, Gang-qiang Kong, Han-long Liu, Hossam Abuel-Naga, Yao-hu Hao

Affiliation(s):  Key Laboratory of Geomechanics and Embankment Dam Engineering, Hohai University, Nanjing 210098, China; more

Corresponding email(s):   gqkong1@163.com

Key Words:  Energy pile, Floating pile, Pile group, Nonuniform thermal, Nonuniform displacement


Huai-feng Peng, Gang-qiang Kong, Han-long Liu, Hossam Abuel-Naga, Yao-hu Hao. Thermo-mechanical behaviour of floating energy pile groups in sand[J]. Journal of Zhejiang University Science A, 2018, 19(8): 638-649.

@article{title="Thermo-mechanical behaviour of floating energy pile groups in sand",
author="Huai-feng Peng, Gang-qiang Kong, Han-long Liu, Hossam Abuel-Naga, Yao-hu Hao",
journal="Journal of Zhejiang University Science A",
volume="19",
number="8",
pages="638-649",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700460"
}

%0 Journal Article
%T Thermo-mechanical behaviour of floating energy pile groups in sand
%A Huai-feng Peng
%A Gang-qiang Kong
%A Han-long Liu
%A Hossam Abuel-Naga
%A Yao-hu Hao
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 8
%P 638-649
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700460

TY - JOUR
T1 - Thermo-mechanical behaviour of floating energy pile groups in sand
A1 - Huai-feng Peng
A1 - Gang-qiang Kong
A1 - Han-long Liu
A1 - Hossam Abuel-Naga
A1 - Yao-hu Hao
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 8
SP - 638
EP - 649
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700460


Abstract: 
This paper presents the experimental results of small-scale model tests of an instrumented floating energy pile group in which the piles were embedded in dry medium-dense sand and subjected to the seasonal temperature pattern of the city of Nanjing in China. The study also included a model test to assess the effect of including nonthermal piles on the thermo-mechanical behaviour of the floating energy pile group. For comparison, a model test of a single floating energy pile embedded in the same soil and subjected to a similar temperature pattern was also conducted. The results show that the thermo-mechanical behaviour of an energy pile group is different from that of a single energy pile in terms of the thermally induced change in axial pile stress and the displacement of the pile top and tip. This difference in behaviour could be explained by the higher lateral confining pressure expected on a single pile than on a pile in a group due to pile interaction effects, which could lead to different end restraint boundary conditions. We conclude that the thermo-mechanical behaviour of an energy pile is controlled mainly by the end restraint boundary conditions.

This is a very interesting paper and is generally well-written. I think that the paper provides a nice set of experimental data on energy pile groups in sand.

砂土地基中摩擦型能量桩群桩热力学特性研究

目的:能量桩在工作状态下的热力学响应十分复杂,同时受到桩顶荷载、桩侧摩擦以及温度等多重因素的影响. 当群桩中出现部分能量桩不工作时,将造成上部结构的额外应力与变形. 因此,本文重点探讨摩擦型能量桩群桩中部分能量桩在加热制冷作用下的热力学响应,并与单桩的热力学效应进行对比分析.
创新点:1. 通过建立摩擦型能量桩群桩模型试验,探讨桩侧摩擦对能量桩群桩的影响规律; 2. 利用能量桩群桩与单桩对比,揭示能量桩群桩与单桩热力响应特性的区别; 3.揭示部分能量桩加热制冷作用对能量桩群桩的影响机理.
方法:1. 建立摩擦型能量桩群桩及单桩的模型试验; 2. 将能量桩群桩与单桩进行对比,研究能量桩群桩与单桩热力响应特性的区别; 3. 进行能量桩群桩部分加热制冷试验.
结论:1. 对于长期工作的能量群桩,可以将其视为一个长宽高与整个群桩相同的热交换体,其表面温度与群桩的平均表面温度一致. 2. 能量桩单桩在加热过程中,由于桩底受到的限制较大,所以桩顶位移大于桩底位移. 3. 能量桩单桩在制冷过程中,由于土体及桩体收缩,会出现明显的下沉. 4. 能量桩群桩桩帽在加热过程中,桩帽的位移与群桩的上半部分长度相关;在本文的试验中,由于群桩上半部分受土的限制较小,因此其位移与桩自由膨胀的位移一样. 5. 能量桩群桩在制冷期间,群桩的下沉量级要比单桩的大. 6. 在制冷过程中,能量桩群桩在群桩效应作用下,内部桩的桩底热位移较大. 7. 能量桩群桩在部分加热的情况下,会出现不均匀沉降,且在加热期间,沉降主要受到不工作桩的牵制影响;而在制冷期间,沉降主要受工作桩的下沉影响. 8. 摩擦型能量桩的热引起的桩身轴力是与桩侧的土压力大小相关的;由于群桩在群桩效应作用下,桩侧土压力要小于单桩,因此群桩的热引起的桩身轴力要大于单桩.

关键词:能量桩;纯摩擦型桩;群桩;不均匀加热;不均匀沉降

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amatya BL, Soga K, Bourne-Webb PJ, et al., 2012. Thermo-mechanical behaviour of energy piles. Géotechnique, 62(6):503-519.

[2]Bourne-Webb PJ, Amatya B, Soga K, et al., 2009. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique, 59(3):237-248.

[3]Bourne-Webb PJ, Amatya B, Soga K, 2012. A framework for understanding energy pile behaviour. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(2):170-177.

[4]Dave TN, Dasaka SM, 2012. Assessment of portable traveling pluviator to prepare reconstituted sand specimens. Geomechanics and Engineering, 4(2):79-90.

[5]Di Donna A, Laloui L, 2015. Numerical analysis of the geotechnical behaviour of energy piles. International Journal for Numerical and Analytical Methods in Geomechanics, 39(8):861-888.

[6]Goode III JC, McCartney JS, 2015. Centrifuge modeling of end-restraint effects in energy foundations. Journal of Geotechnology and Geoenvironmental Engineering, 141(8):1-13.

[7]Hariprasad C, Rajashekhar M, Umashankar B, 2016. Preparation of uniform sand specimens using stationary pluviation and vibratory methods. Geotechnical and Geological Engineering, 34(6):1909-1922.

[8]Jeong S, Lim H, Lee JK, et al., 2014. Thermally induced mechanical response of energy piles in axially loaded pile groups. Applied Thermal Engineering, 71(1):608-615.

[9]Kalantidou A, Tang AM, Pereira JM, et al., 2012. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique, 62(11):1047-1051.

[10]Kraft Jr LM, 1991. Performance of axially loaded pipe piles in sand. Journal of Geotechnical Engineering, 117(2):272-296.

[11]Laloui L, Nuth M, Vulliet L, 2006. Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8):763-781.

[12]Li M, Lai ACK, 2015. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales. Applied Energy, 151: 178-191.

[13]Liu XC, Xu WJ, Zhan LT, et al., 2016. Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(7):553-564.

[14]Lo Presti DCF, Berardi R, Pedroni S, et al., 1993. A new traveling sand pluviator to reconstitute specimens of well-graded silty sands. Geotechnical Testing Journal, 16(1):18-26.

[15]McCartney JS, Rosenberg JE, 2011. Impact of heat exchange on side shear in thermo-active foundations. Geo-Frontiers 2011: Advances in Geotechnical Engineering, p.488-498.

[16]Mimouni T, Laloui L, 2015. Behaviour of a group of energy piles. Canadian Geotechnical Journal, 52(12):1913-1929.

[17]Murphy KD, McCartney JS, Henry KS, 2015. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotechnica, 10(2):179-195.

[18]Ng CWW, Shi C, Gunawan A, et al., 2014. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Géotechnique Letters, 4(4):310-316.

[19]Poulos HG, Mattes NS, 1985. Settlement and load distribution analysis of pile groups. In: Golden Jubilee of the International Society for Soil Mechanics and Foundation Engineering: Commemorative Volume. Institution of Engineers, Barton, Australia, p.155-165.

[20]Rotta Loria AF, Laloui L, 2017a. Thermally induced group effects among energy piles. Géotechnique, 67(5):374-393.

[21]Rotta Loria AF, Laloui L, 2017b. The equivalent pier method for energy pile groups. Géotechnique, 67(8):691-702.

[22]Rotta Loria AF, Laloui L, 2017c. Displacement interaction among energy piles bearing on stiff soil strata. Computers and Geotechnics, 90:144-154.

[23]Saggu R, Chakraborty T, 2016. Thermomechanical response of geothermal energy pile groups in sand. International Journal of Geomechanics, 16(4):1-13.

[24]Salciarini D, Ronchi F, Cattoni E, et al., 2013. Thermomechanical effects induced by energy piles operation in a small piled raft. International Journal of Geomechanics, 15(2):04014042.

[25]Salciarini D, Ronchi F, Tamagnini C, 2017. Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study. Acta Geotechnica, 12(4):703-728.

[26]Salgado R, Mitchell JK, Jamiolkowski M, 1998. Calibration chamber size effects on penetration resistance in sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(9):878-888.

[27]Stewart MA, McCartney JS, 2014. Centrifuge modeling of soil-structure interaction in energy foundations. Journal of Geotechnical and Geoenvironmental Engineering, 140(4):04013044.

[28]Wang B, Bouazza A, Singh RM, et al., 2014. Posttemperature effects on shaft capacity of a full-scale geothermal energy pile. Journal of Geotechnical and Geoenvironmental Engineering, 141(4):04014125.

[29]Wang CL, Liu HL, Kong GQ, et al., 2016. Model tests of energy piles with and without a vertical load. Environmental Geotechnics, 3(4):203-213.

[30]Wang CL, Liu HL, Kong GQ, et al., 2017. Different types of energy piles with heating-cooling cycles. Proceedings of the Institution of Civil Engineers–Geotechnical Engineering, 170(3):220-231.

[31]Wang TF, Liu JK, Zhao HG, et al., 2016. Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(7):512-524.

[32]You S, Cheng XH, Guo HX, et al., 2014. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy and Buildings, 79:23-31.

[33]You S, Cheng XH, Guo HX, et al., 2016. Experimental study on structural response of CFG energy piles. Applied Thermal Engineering, 96:640-651.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE