CLC number: U445
On-line Access: 2020-05-11
Received: 2019-06-16
Revision Accepted: 2019-11-08
Crosschecked: 2020-03-17
Cited: 0
Clicked: 3496
Jin-feng Wang, Hua-wei Xiang, Jiang-tao Zhang, Tian-mei Wu, Rong-qiao Xu. Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation[J]. Journal of Zhejiang University Science A, 2020, 21(5): 382-391.
@article{title="Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation",
author="Jin-feng Wang, Hua-wei Xiang, Jiang-tao Zhang, Tian-mei Wu, Rong-qiao Xu",
journal="Journal of Zhejiang University Science A",
volume="21",
number="5",
pages="382-391",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900213"
}
%0 Journal Article
%T Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation
%A Jin-feng Wang
%A Hua-wei Xiang
%A Jiang-tao Zhang
%A Tian-mei Wu
%A Rong-qiao Xu
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 5
%P 382-391
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900213
TY - JOUR
T1 - Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation
A1 - Jin-feng Wang
A1 - Hua-wei Xiang
A1 - Jiang-tao Zhang
A1 - Tian-mei Wu
A1 - Rong-qiao Xu
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 5
SP - 382
EP - 391
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900213
Abstract: This paper aims to address the problem of geometric state control of large-segment steel box girders in offshore hoisting during the construction of large-span bridges. First, the geometric state control indexes of a large-segment steel box girder are determined, such as the manufacturing parameters of the top and bottom slabs, the width of the annular joint, and the support position. Second, the geometric state equations and state transfer matrixes of large-segment steel box girders under different conditions are deduced by taking the mileage and elevation of control points as basic state variables. In application of the geometric state transfer method in the construction control of the Hong Kong-Zhuhai-Macao Bridge, the width of the annular joint and the position parameters for the support of the large-segment steel box girder are predicted precisely. Moreover, the manufacturing parameters of the top and bottom slabs of the steel box girders are calculated reliably. The measured values show that the width of the annular joint is basically the same with the difference of less than 2 mm, the eccentricity of bridge support is less than 20 mm, and the elevation error of the bridge deck is within −10 mm to +15 mm, which meets the construction accuracy. Using the geometric state transfer method, the rapid and accurate installation of the Hong Kong-Zhuhai-Macao Bridge has been realized, demonstrating that the precise control of the geometric state of a steel box girder with ectopic installation and multi-state transition can be realized by using the geometric state transfer method.
[1]Arici M, Granata MF, 2007. Analysis of curved incrementally launched box concrete bridges using the Transfer Matrix Method. Bridge Structures, 3(3-4):165-181.
[2]Breen JE, 1985. Controlling twist in precast segmental concrete bridges. PCI Journal, 30(4):86-111.
[3]Chen DW, Zheng XG, Xiang HF, 1993. A construction control system for P.C. cable-stayed bridges. China Civil Engineering Journal, 26(1):1-11 (in Chinese).
[4]Li CX, He J, Dong CW, et al., 2015. Control of self-adaptive unstressed configuration for incrementally launched girder bridges. Journal of Bridge Engineering, 20(10):04014105.
[5]Li Q, Bu YZ, Zhang QH, 2009. Whole-procedure adaptive construction control system based on geometry control method. China Civil Engineering Journal, 42(7):69-77 (in Chinese).
[6]Lin JP, Wang JF, Chen CL, et al., 2014. Geometric shape control of trough steel girder composite bridge constructed by incremental launching method. Bridge Construction, 44(4):102-106 (in Chinese).
[7]Lin YP, 1983. Application of Kalman’s filtering method to cable stayed bridge construction. China Civil Engineering Journal, 16(3):7-14 (in Chinese).
[8]Meng FC, Liu MH, Wu WS, et al., 2014. The design philosophy and bridge’s technical innovation of Hong Kong-Zhuhai-Macau Bridge. Engineering Sciences, 17(1):27-35 (in Chinese).
[9]Muller J, 1975. Ten years of experience in precast segmental construction. PCI Journal, 20(1):28-61.
[10]Rosignoli M, 1997. Solution of the continuous beam in launched bridges. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 122(4):390-398.
[11]Seki F, Tanaka S, 1991. Construction control system for cable-stayed bridges. Proceedings of IABSE, 64:286-287.
[12]http://doi.org/10.5169/seals-49315
[13]Taylor PR, 1986. Annacis bridge superstructure–a major composite cable-stayed bridge. Annual Conference RTAC, p.89-105.
[14]Thomson WT, 1950. Matrix solution for the vibration of non-uniform beams. Journal of Applied Mechanics, 17: 337-339.
[15]Wada K, Takano H, Tomita N, et al., 1991. Construction of the Yokohama Bay Bridge superstructure. IABSE Symposium Leningrad, 64:177-182.
[16]http://doi.org/10.5169/seals-49293
[17]Wang JF, Lin JP, Xu RQ, 2015. Incremental launching construction control of long multispan composite bridges. Journal of Bridge Engineering, 20(11):04015006.
[18]Yan DH, Chen CS, Dong DF, et al., 2012. Control of self-adaptive zero-stress configuration for long-span cable-stayed bridge with steel main girders. China Journal of Highway and Transport, 25(1):55-58 (in Chinese).
[19]Zhong WX, Liu YF, Ji Z, 1992. Control and adjustment of cable tension in the construction of cable-stayed bridge. China Civil Engineering Journal, 25(3):9-15 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>