CLC number:
On-line Access: 2020-05-11
Received: 2020-02-19
Revision Accepted: 2020-04-06
Crosschecked: 2020-04-24
Cited: 0
Clicked: 3520
Xiong-xin Hu, Fang Xu, Da-peng Tan. A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings[J]. Journal of Zhejiang University Science A, 2020, 21(5): 401-405.
@article{title="A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings",
author="Xiong-xin Hu, Fang Xu, Da-peng Tan",
journal="Journal of Zhejiang University Science A",
volume="21",
number="5",
pages="401-405",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000067"
}
%0 Journal Article
%T A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings
%A Xiong-xin Hu
%A Fang Xu
%A Da-peng Tan
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 5
%P 401-405
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000067
TY - JOUR
T1 - A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings
A1 - Xiong-xin Hu
A1 - Fang Xu
A1 - Da-peng Tan
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 5
SP - 401
EP - 405
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000067
Abstract: The position estimator is a key module of self-sensing active magnetic bearings (AMBs). It can improve system dynamic performance and reduce the axial dimension. Generally, the estimation methods can be divided into two categories: state observer estimation and parameter estimation.
[1]Chen SL, Lin SY, Toh CS, 2020. Adaptive unbalance compensation for a three-pole active magnetic bearing system. IEEE Transactions on Industrial Electronics, 67(3):2097-2106.
[2]Glück T, Kemmetmüller W, Tump C, et al., 2011. A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification. Control Engineering Practice, 19(2):146-157.
[3]Ji SM, Weng XX, Tan DP, 2012. Analytical method of softness abrasive two-phase flow field based on 2D model of LSM. Acta Physica Sinica, 61(1):010205 (in Chinese).
[4]Li LC, Shinshi T, Shimokohbe A, 2004. State feedback control for active magnetic bearings based on current change rate alone. IEEE Transactions on Magnetics, 40(6):3512-3517.
[5]Maslen EH, Montie DT, Iwasaki T, 2006. Robustness limitations in self-sensing magnetic bearings. Journal of Dynamic Systems, Measurement, and Control, 128(2):197-203.
[6]Niemann AC, van Schoor G, du Rand CP, 2013. A self-sensing active magnetic bearing based on a direct current measurement approach. Sensors, 13(9):12149-12165.
[7]Park YH, Han DC, Park IH, et al., 2008. A self-sensing technology of active magnetic bearings using a phase modulation algorithm based on a high frequency voltage injection method. Journal of Mechanical Science and Technology, 22(9):1757-1764.
[8]Ranft EO, van Schoor G, du Rand CP, 2011. Self-sensing for electromagnetic actuators. Part II: position estimation. Sensors and Actuators A: Physical, 172(2):410-419.
[9]Schammass A, Herzog R, Buhler P, et al., 2005. New results for self-sensing active magnetic bearings using modulation approach. IEEE Transactions on Control Systems Technology, 13(4):509-516.
[10]Tan DP, Zhang LB, Ai QL, 2019. An embedded self-adapting network service framework for networked manufacturing system. Journal of Intelligent Manufacturing, 30(2):539-556.
[11]van Schoor G, Niemann AC, du Rand CP, 2013. Evaluation of demodulation algorithms for robust self-sensing active magnetic bearings. Sensors and Actuators A: Physical, 189:441-450.
[12]Vischer D, 1988. Sensorless and Voltage Driven Magnetic Bearing. PhD Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.
[13]Yu J, Zhu CS, 2016. Position estimation accuracy improvement based on accurate modeling of self-sensing active magnetic bearings. Sensors and Actuators A: Physical, 248:233-245.
[14]Yu J, Zhu CS, 2018. A multifrequency disturbances identification and suppression method for the self-sensing AMB rotor system. IEEE Transactions on Industrial Electronics, 65(8):6382-6392.
[15]Zhang L, Wang JS, Tan DP, et al., 2017. Gas compensation-based abrasive flow processing method for complex titanium alloy surfaces. International Journal of Advanced Manufacturing Technology, 92(9-12):3385-3397.
Open peer comments: Debate/Discuss/Question/Opinion
<1>