Full Text:   <802>

Summary:  <691>

CLC number: O59; TN710

On-line Access: 2021-06-16

Received: 2021-07-13

Revision Accepted: 2021-08-05

Crosschecked: 2021-09-04

Cited: 0

Clicked: 1284

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jun Ma

https://orcid.org/0000-0002-6127-000X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2021 Vol.22 No.9 P.707-720

http://doi.org/10.1631/jzus.A2100323


Wave filtering and firing modes in a light-sensitive neural circuit


Author(s):  Xiu-fang Zhang, Jun Ma

Affiliation(s):  Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China; more

Corresponding email(s):   hyperchaos@163.com

Key Words:  Light-sensitive neuron, Neural circuit, Phototube, Bifurcation, Information encoding


Xiu-fang Zhang, Jun Ma. Wave filtering and firing modes in a light-sensitive neural circuit[J]. Journal of Zhejiang University Science A, 2021, 22(9): 707-720.

@article{title="Wave filtering and firing modes in a light-sensitive neural circuit",
author="Xiu-fang Zhang, Jun Ma",
journal="Journal of Zhejiang University Science A",
volume="22",
number="9",
pages="707-720",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100323"
}

%0 Journal Article
%T Wave filtering and firing modes in a light-sensitive neural circuit
%A Xiu-fang Zhang
%A Jun Ma
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 9
%P 707-720
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100323

TY - JOUR
T1 - Wave filtering and firing modes in a light-sensitive neural circuit
A1 - Xiu-fang Zhang
A1 - Jun Ma
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 9
SP - 707
EP - 720
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100323


Abstract: 
Inspired by the photoelectric effect, a phototube is incorporated into a simple neural circuit, and then the output voltage and dynamics become sensitive to external illumination within a specific frequency band. The firing modes are also dependent on the amplitude and frequency band in the illumination. In this paper, the signal outputs from a chaotic circuit are used as external optical signals, which are filtered and encoded by a phototube. Then, the functional neural circuit is excited to present a variety of firing modes and patterns. An exponential function of the filtering wave is proposed to discover the biophysical mechanism for frequency selection in the retina as most of wave bands of the external illumination are absorbed in the cathode material of the phototube while a specific band is effective in inducing a photocurrent for stimulating the visual neurons. Based on our light-sensitive neural circuit and model, external illumination is filtered and firing modes in the neuron are reproduced; furthermore, the mode transition induced by parameter shift is also investigated in detail. This result discovers the signal processing mechanism in the visual neurons and provides helpful guidance for designing artificial sensors for encoding optical signals and for repairing abnormalities in the retina of the visual system.

光敏神经元电路的选频和放电模态研究

目的:研究视觉神经元对光信号识别和响应的物理学机制,以及其控制策略.
创新点:1. 以光敏神经元电路为例,设计了基于Heaviside函数的滤波标准,并对多频段信号源进行滤波,揭示了光敏神经元对光信号选频的机制;2. 该方法也可以适用于揭示听觉系统选频机制.
方法:1. 把光电管连接到一类简单的电阻-电感-电容(RLC)神经元电路中,光电管中激发的电流会驱动神经元电路来产生各种模态;2. 以混沌电路输出作为外界宽频信号源,设计一类滤波函数标准对宽频信号进行选频.
结论:1. 选频过程类似于视觉神经元对外界光照频段的选择,设计不同的选频阈值可以控制滤波信号的频段和幅度,进而影响神经元的放电模态和斑图,即神经元对外界光照要么不响应,要么产生恰当的放电模态;2. 选频标准的核心在于滤波函数的上限和下限阈值;从实验角度可以在光电管阴极镀膜或者在光电管窗口多次镀膜来对入射光进行过滤或者增强投射;在设定阈值频率之外的光照则被光电管的镀层材料吸收,达到滤波的目的.

关键词:光敏神经元;神经元电路;光电管;分岔;信息编码

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Achour SB, Pascual O, 2012. Astrocyte–neuron communication: functional consequences. Neurochemical Research, 37(11):2464-2473. https://doi.org/10.1007/s11064-012-0807-0

[2]Babacan Y, Yesil A, Kacar F, 2017. Memristor emulator with tunable characteristic and its experimental results. AEU-International Journal of Electronics and Communications, 81:99-104. https://doi.org/10.1016/j.aeue.2017.07.012

[3]Bao BC, Zhu YX, Ma J, et al., 2021. Memristive neuron model with an adapting synapse and its hardware experiments. Science China Technological Sciences, 64(5):1107-1117. https://doi.org/10.1007/s11431-020-1730-0

[4]Bao H, Chen M, Wu HG, et al., 2020. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system. Science China Technological Sciences, 63(4):603-613. https://doi.org/10.1007/s11431-019-1450-6

[5]Baysal V, Erkan E, Yilmaz E, 2021. Impacts of autapse on chaotic resonance in single neurons and small-world neuronal networks. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2198):20200237. https://doi.org/10.1098/rsta.2020.0237

[6]Brazhe AR, Postnov DE, Sosnovtseva O, 2018. Astrocyte calcium signaling: interplay between structural and dynamical patterns. Chaos, 28(10):106320. https://doi.org/10.1063/1.5037153

[7]Chen M, Qi JW, Wu HG, et al., 2020. Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Science China Technological Sciences, 63(6):1035-1044. https://doi.org/10.1007/s11431-019-1458-5

[8]Dipoppa M, Ranson A, Krumin M, et al., 2018. Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron, 98(3):602-615. https://doi.org/10.1016/j.neuron.2018.03.037

[9]Du MM, Li JJ, Yuan ZX, et al., 2020. Astrocyte and ions metabolism during epileptogenesis: a review for modeling studies. Chinese Physics B, 29(3):038701. https://doi.org/10.1088/1674-1056/ab6961

[10]Duan KR, Fong S, Chen CLP, 2020. Multilayer neural networks-based control of underwater vehicles with uncertain dynamics and disturbances. Nonlinear Dynamics, 100(4):3555-3573. https://doi.org/10.1007/s11071-020-05720-5

[11]Erkan Y, Saraç Z, Yılmaz E, 2019. Effects of astrocyte on weak signal detection performance of Hodgkin–Huxley neuron. Nonlinear Dynamics, 95(4):3411-3421. https://doi.org/10.1007/s11071-019-04764-6

[12]Fitch AL, Yu DS, Iu HHC, et al., 2012. Hyperchaos in a memristor-based modified canonical Chua’s circuit. International Journal of Bifurcation and Chaos, 22(6):1250133. https://doi.org/10.1142/S0218127412501337

[13]Furtak SC, Ahmed OJ, Burwell RD, 2012. Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron, 76(5):976-988. https://doi.org/10.1016/j.neuron.2012.10.039

[14]Gabbiani F, Krapp HG, Koch C, et al., 2002. Multiplicative computation in a visual neuron sensitive to looming. Nature, 420(6913):320-324. https://doi.org/10.1038/nature01190

[15]Ge MY, Jia Y, Xu Y, et al., 2019. Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network. Applied Mathematics and Computation, 352:136-145. https://doi.org/10.1016/j.amc.2019.01.059

[16]Guo SL, Tang J, Ma J, et al., 2017. Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity, 2017:4631602. https://doi.org/10.1155/2017/4631602

[17]Guo YT, Zhou P, Yao Z, et al., 2021. Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dynamics, 1-12. https://doi.org/10.1007/s11071-021-06770-z

[18]Heil P, 2004. First-spike latency of auditory neurons revisited. Current Opinion in Neurobiology, 14(4):461-467. https://doi.org/10.1016/j.conb.2004.07.002

[19]Ibrahim O, Hassan SM, Abdulkarim A, et al., 2019. Design of wheatstone bridge based thermistor signal conditioning circuit for temperature measurement. Journal of Engineering Science and Technology Review, 12(1):12-17. https://doi.org/10.25103/jestr.121.02

[20]Jiao TC, Zong GD, Ahn CK, 2020. Noise-to-state practical stability and stabilization of random neural networks. Nonlinear Dynamics, 100(3):2469-2481. https://doi.org/10.1007/s11071-020-05628-0

[21]Jin WY, Wang A, Ma J, et al., 2019. Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Science China Technological Sciences, 62(12):2113-2119. https://doi.org/10.1007/s11431-018-9423-x

[22]Juzekaeva E, Nasretdinov A, Battistoni S, et al., 2019. Coupling cortical neurons through electronic memristive synapse. Advanced Materials Technologies, 4(1):1800350. https://doi.org/10.1002/admt.201800350

[23]Koudafokê GN, Hinvi LA, Miwadinou CH, et al., 2021. Passive sensor with Josephson junction coupled to an electric resonator and a nanobeam. Sensors and Actuators A: Physical, 318:112509. https://doi.org/10.1016/j.sna.2020.112509

[24]Koundakjian EJ, Appler JL, Goodrich LV, 2007. Auditory neurons make stereotyped wiring decisions before maturation of their targets. Journal of Neuroscience, 27(51):14078-14088. https://doi.org/10.1523/JNEUROSCI.3765-07.2007

[25]Kyprianidis IM, Papachristou V, Stouboulos IN, et al., 2012. Dynamics of coupled chaotic Bonhoeffer–van der Pol oscillators. WSEAS Transactions on Systems, 11(9):516-526.

[26]Lee SJ, Kenyon C, 2009. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Current Biology, 19(9):715-722. https://doi.org/10.1016/j.cub.2009.03.041

[27]Li JJ, Wang R, Du MM, et al., 2016. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block. Chaos, Solitons & Fractals, 91:702-708. https://doi.org/10.1016/j.chaos.2016.08.009

[28]Li YY, Gu HG, Jia B, et al., 2021. The nonlinear mechanism for the same responses of neuronal bursting to opposite self-feedback modulations of autapse. Science China Technological Sciences, 64(7):1459-1471. https://doi.org/10.1007/s11431-020-1753-y

[29]Liu Y, Xu WJ, Ma J, et al., 2020a. A new photosensitive neuron model and its dynamics. Frontiers of Information Technology & Electronic Engineering, 21(9):1387-1396. https://doi.org/10.1631/FITEE.1900606

[30]Liu Y, Xu Y, Ma J, 2020b. Synchronization and spatial patterns in a light-dependent neural network. Communications in Nonlinear Science and Numerical Simulation, 89:105297. https://doi.org/10.1016/j.cnsns.2020.105297

[31]Lukić J, Denić D, 2015. A novel design of an NTC thermistor linearization circuit. Metrology and Measurement Systems, 22(3):351-362. https://doi.org/10.1515/mms-2015-0035

[32]Lv M, Ma J, Yao YG, et al., 2019. Synchronization and wave propagation in neuronal network under field coupling. Science China Technological Sciences, 62(3):448-457. https://doi.org/10.1007/s11431-018-9268-2

[33]Ma J, Qin HX, Song XL, et al., 2015. Pattern selection in neuronal network driven by electric autapses with diversity in time delays. International Journal of Modern Physics B, 29(1):1450239. https://doi.org/10.1142/S0217979214502397

[34]Ma J, Yang ZQ, Yang LJ, et al., 2019. A physical view of computational neurodynamics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(9):639-659. https://doi.org/10.1631/jzus.A1900273

[35]Machens CK, Schütze H, Franz A, et al., 2003. Single auditory neurons rapidly discriminate conspecific communication signals. Nature Neuroscience, 6(4):341-342. https://doi.org/10.1038/nn1036

[36]MacVicar BA, Newman EA, 2015. Astrocyte regulation of blood flow in the brain. Cold Spring Harbor Perspectives in Biology, 7(5):a020388. https://doi.org/10.1101/cshperspect.a020388

[37]Nakayama T, 1985. Thermosensitive neurons in the brain. The Japanese Journal of Physiology, 35(3):375-389. https://doi.org/10.2170/jjphysiol.35.375

[38]Perc M, 2007a. Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos, Solitons & Fractals, 31(2):280-291. https://doi.org/10.1016/j.chaos.2005.10.018

[39]Perc M, 2007b. Fluctuating excitability: a mechanism for self-sustained information flow in excitable arrays. Chaos, Solitons & Fractals, 32(3):1118-1124. https://doi.org/10.1016/j.chaos.2005.11.035

[40]Peron S, Gabbiani F, 2009. Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nature Neuroscience, 12(3):318-326. https://doi.org/10.1038/nn.2259

[41]Pikovskii AS, Rabinovich MI, 1978. A simple autogenerator with stochastic behavior. Soviet Physics Doklady, 23: 183-185.

[42]Pountougnigni OV, Yamapi R, Filatrella G, et al., 2019. Noise and disorder effects in a series of birhythmic Josephson junctions coupled to a resonator. Physical Review E, 99(3):032220. https://doi.org/10.1103/PhysRevE.99.032220

[43]Qin HX, Ma J, Wang CN, et al., 2014. Autapse-induced target wave, spiral wave in regular network of neurons. Science China Physics, Mechanics & Astronomy, 57(10):1918-1926. https://doi.org/10.1007/s11433-014-5466-5

[44]Richter CP, Bayon R, Izzo AD, et al., 2008. Optical stimulation of auditory neurons: effects of acute and chronic deafening. Hearing Research, 242(1-2):42-51. https://doi.org/10.1016/j.heares.2008.01.011

[45]Ruchty M, Roces F, Kleineidam CJ, 2010. Detection of minute temperature transients by thermosensitive neurons in ants. Journal of Neurophysiology, 104(3):1249-1256. https://doi.org/10.1152/jn.00390.2010

[46]Saira OP, Zgirski M, Viisanen KL, et al., 2016. Dispersive thermometry with a Josephson junction coupled to a resonator. Physical Review Applied, 6(2):024005. https://doi.org/10.1103/PhysRevApplied.6.024005

[47]Seung HS, Lee DD, Reis BY, et al., 2000. The autapse: a simple illustration of short-term analog memory storage by tuned synaptic feedback. Journal of Computational Neuroscience, 9(2):171-185. https://doi.org/10.1023/A:1008971908649

[48]Song XL, Wang HT, Chen Y, 2019. Autapse-induced firing patterns transitions in the Morris–Lecar neuron model. Nonlinear Dynamics, 96(4):2341-2350. https://doi.org/10.1007/s11071-019-04925-7

[49]Tang J, Zhang J, Ma J, et al., 2017. Astrocyte calcium wave induces seizure-like behavior in neuron network. Science China Technological Sciences, 60(7):1011-1018. https://doi.org/10.1007/s11431-016-0293-9

[50]Vourkas I, Sirakoulis GC, 2016. Emerging memristor-based logic circuit design approaches: a review. IEEE Circuits and Systems Magazine, 16(3):15-30. https://doi.org/10.1109/MCAS.2016.2583673

[51]Wang CN, Guo SL, Xu Y, et al., 2017. Formation of autapse connected to neuron and its biological function. Complexity, 2017:5436737. https://doi.org/10.1155/2017/5436737

[52]Wang CN, Tang J, Ma J, 2019. Minireview on signal exchange between nonlinear circuits and neurons via field coupling. The European Physical Journal Special Topics, 228(10):1907-1924. https://doi.org/10.1140/epjst/e2019-800193-8

[53]Wiederman SD, O’Carroll DC, 2013. Selective attention in an insect visual neuron. Current Biology, 23(2):156-161. https://doi.org/10.1016/j.cub.2012.11.048

[54]Wu FQ, Zhang Y, Zhang XJ, 2019. Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dynamics, 98(2):971-984. https://doi.org/10.1007/s11071-019-05239-4

[55]Wu FQ, Ma J, Zhang G, 2020. Energy estimation and coupling synchronization between biophysical neurons. Science China Technological Sciences, 63(4):625-636. https://doi.org/10.1007/s11431-019-9670-1

[56]Xu Y, Liu MH, Zhu ZG, et al., 2020a. Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chinese Physics B, 29(9):098704. https://doi.org/10.1088/1674-1056/ab9dee

[57]Xu Y, Guo YY, Ren GD, et al., 2020b. Dynamics and stochastic resonance in a thermosensitive neuron. Applied Mathematics and Computation, 385:125427. https://doi.org/10.1016/j.amc.2020.125427

[58]Yao CG, 2020. Synchronization and multistability in the coupled neurons with propagation and processing delays. Nonlinear Dynamics, 101(4):2401-2411. https://doi.org/10.1007/s11071-020-05922-x

[59]Yao CG, He ZW, Nakano T, et al., 2019. Inhibitory-autapse-enhanced signal transmission in neural networks. Nonlinear Dynamics, 97(2):1425-1437. https://doi.org/10.1007/s11071-019-05060-z

[60]Zandi-Mehran N, Jafari S, Golpayegani SMRH, et al., 2020. Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dynamics, 100(2):1809-1824. https://doi.org/10.1007/s11071-020-05576-9

[61]Zhang L, Jones S, Brody K, et al., 2004. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. American Journal of Physiology-Gastrointestinal and Liver Physiology, 286(6):G983-G991. https://doi.org/10.1152/ajpgi.00441.2003

[62]Zhang Y, Xu Y, Yao Z, et al., 2020. A feasible neuron for estimating the magnetic field effect. Nonlinear Dynamics, 102(3):1849-1867. https://doi.org/10.1007/s11071-020-05991-y

[63]Zhang Y, Zhou P, Tang J, et al., 2021. Mode selection in a neuron driven by Josephson junction current in presence of magnetic field. Chinese Journal of Physics, 71:72-84. https://doi.org/10.1016/j.cjph.2020.11.011

[64]Zhao ZG, Li L, Gu HG, 2020. Excitatory autapse induces different cases of reduced neuronal firing activities near Hopf bifurcation. Communications in Nonlinear Science and Numerical Simulation, 85:105250. https://doi.org/10.1016/j.cnsns.2020.105250

[65]Zhou P, Yao Z, Ma J, et al., 2021a. A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos, Solitons & Fractals, 145: 110751. https://doi.org/10.1016/j.chaos.2021.110751

[66]Zhou P, Hu XK, Zhu ZG, et al., 2021b. What is the most suitable Lyapunov function? Chaos, Solitons & Fractals, 150:111154. https://doi.org/10.1016/j.chaos.2021.111154

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE