Full Text:   <1359>

Summary:  <432>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-08-30

Cited: 0

Clicked: 3827

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jia-wang CHEN

https://orcid.org/0000-0002-6351-0062

Hao WANG

https://orcid.org/0000-0001-7757-3753

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.8 P.587-598

http://doi.org/10.1631/jzus.A2100375


Design and friction loss study of full-ocean depth oil-filled direct current motor


Author(s):  Hao WANG, Chen CAO, Jin GUO, Wei WANG, Peng ZHOU, Jia-wang CHEN

Affiliation(s):  Ocean College, Zhejiang University, Zhoushan 316000, China

Corresponding email(s):   arwang@zju.edu.cn

Key Words:  Oil-filled motor, Full-ocean depth, Rotating seals, Friction loss, Viscous power, Sea trial


Share this article to: More |Next Article >>>

Hao WANG, Chen CAO, Jin GUO, Wei WANG, Peng ZHOU, Jia-wang CHEN. Design and friction loss study of full-ocean depth oil-filled direct current motor[J]. Journal of Zhejiang University Science A, 2022, 23(8): 587-598.

@article{title="Design and friction loss study of full-ocean depth oil-filled direct current motor",
author="Hao WANG, Chen CAO, Jin GUO, Wei WANG, Peng ZHOU, Jia-wang CHEN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="8",
pages="587-598",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100375"
}

%0 Journal Article
%T Design and friction loss study of full-ocean depth oil-filled direct current motor
%A Hao WANG
%A Chen CAO
%A Jin GUO
%A Wei WANG
%A Peng ZHOU
%A Jia-wang CHEN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 8
%P 587-598
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100375

TY - JOUR
T1 - Design and friction loss study of full-ocean depth oil-filled direct current motor
A1 - Hao WANG
A1 - Chen CAO
A1 - Jin GUO
A1 - Wei WANG
A1 - Peng ZHOU
A1 - Jia-wang CHEN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 8
SP - 587
EP - 598
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100375


Abstract: 
In this study, we designed an oil-filled motor that can be used at full-ocean depths, and investigated the friction losses caused by the rotating seal and the properties of the oil. The direct current (DC) motor is encapsulated in an aluminum alloy housing. A rubber diaphragm is used to balance the internal and external pressures so that the motor can work on the seabed without pressure difference. To study the resistance caused by the rotating seal, a numerical model of the Glyd ring and the rotating shaft was established. Results from a rotational torque test agreed with those from numerical analysis. The kinematic viscosity of four oils was measured at 1–25 °C. Oil bath experiments in an incubator showed that the resistance from oil is highly correlated with its dynamic viscosity. Dimethicone appears to be very suitable as an insulating oil for these motors. The working characteristics of the motor were tested in a high-pressure chamber. The results showed that the motor needs to overcome higher oil resistance under higher pressure. A prototype of a pressure-adaptive motor was designed and applied successfully in the hadal zone at a water depth of more than 10000 m.

全海深充油电机设计及其摩擦损耗特性研究

作者:王豪,曹晨,郭进,王威,周朋,陈家旺
机构:浙江大学,海洋学院,中国舟山,316000
目的:设计一种压力自平衡式充油电机以适应全海深工作的需求,并探究输出轴处旋转密封件的摩擦阻以及四种不同类型油的粘性阻力,为深海电动执行器的设计提供参考。
创新点:1.提出了旋转密封用格莱圈对电机输出轴旋转阻力的影响。2.通过仿真与实验相结合的方法探究了几种不同的液压油在不同温度下电机的粘性阻力影响。
方法:1.在分析对比磁耦合电机与充油电机的基础上,设计充油电机的结构(图1),并介绍其控制方式和工作模式(图2)。2.从两个方面研究充油电机的摩擦损耗特性:首先,研究旋转密封对电机的摩擦损耗,在有限元分析软件Abaqus中建立分析模型(图3),得到不同压缩率下的旋转密封接触压力分布(图4),并搭建旋转密封测试平台以验证分析结果(图5);其次,研究充油类型在高压和低温情况下对充油电机工作的影响。3.基于Fluent建立充油电机旋转分析模型,并得到其在不同温度、不同油类型下的油粘损耗(图8)。4.在高压舱内进行测试,研究高压对电机工作性能的影响(图10)。5.介绍所研制的电机在马里亚纳海沟的应用(图14)。
结论:1.旋转密封格莱圈对于电机的摩擦阻力随着压缩率的增大而增大,并且其启动阻力约为稳定运行时阻力的2.5倍。2.电机所受到的粘性阻力与油的动力粘度高度正相关。3.二甲基硅油是充油电机用油的合适选择之一;其粘性阻力低且在低温下的动力粘度变化不大。

关键词:充油电机;全海深;旋转密封;摩擦损耗;粘性功率;海上试验

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BaiYF, ZhangQF, FanYL, et al., 2018. Research and experiment on viscous friction power loss of deep-sea electric manipulator. Proceedings of OCEANS-MTS/IEEE Kobe Techno-Oceans, p.1-4.

[2]BaiYF, ZhangQF, ZhangAQ, 2021. Modeling and optimization of compensating oil viscous power for a deep-sea electric manipulator. IEEE Access, 9:13524-13531.

[3]CaiMJ, WuSJ, YangCJ, 2016. Effect of low temperature and high pressure on deep-sea oil-filled brushless DC motors. Marine Technology Society Journal, 50(2):83-93.

[4]ChenJW, HuangY, LinY, et al., 2020. A novel sediment pressure sampling device carried by a hadal-rated lander. Journal of Marine Science and Engineering, 8(11):839.

[5]DuMR, PengXT, ZhangHB, et al., 2021. Geology, environment, and life in the deepest part of the world’s oceans. The Innovation, 2(2):100109.

[6]DubbiosoG, MuscariR, di MascioA, 2014. Analysis of a marine propeller operating in oblique flow. Part 2: very high incidence angles. Computers & Fluids, 92:56-81.

[7]FuM, YanH, YinZY, et al., 2019. Coupling calculation of 3D whole domain steady flow and temperature field for underwater oil-filled brushless DC motors. Proceedings of the 22nd International Conference on Electrical Machines and Systems, p.1-6.

[8]GasparotoHF, ChocronO, BenbouzidM, et al., 2021. Advances in reconfigurable vectorial thrusters for adaptive underwater robots. Journal of Marine Science and Engineering, 9(2):170.

[9]JiB, LuoXW, PengXX, et al., 2012. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. International Journal of Multiphase Flow, 43:13-21.

[10]KangYJ, LiuSJ, ZouWS, et al., 2019. Design and analysis of an innovative deep-sea lifting motor pump. Applied Ocean Research, 82:22-31.

[11]LiGR, ChenXP, ZhouFH, et al., 2021. Self-powered soft robot in the Mariana trench. Nature, 591(7848):66-71.

[12]LiJJ, XuYX, ZouJB, et al., 2009. Rotor eddy-current loss of permanent magnet machine in brushless AC and DC modes, used for deep-sea HUV’s propeller. Proceedings of the International Conference on Electrical Machines and Systems, p.1-4.

[13]LiJJ, ZhouJB, JiangXT, et al., 2010. Electrical-thermal coupled calculation of a submersible motor used for deep-sea electromagnetic propeller. Proceedings of the Digests of the 14th Biennial IEEE Conference on Electromagnetic Field Computation, p.1.

[14]MengJH, 2021. Sliding mode variable structure chaos control for propulsion motor of deep sea robot. Journal of Physics: Conference Series, 2025:012077.

[15]QiuZL, 2008. Design and research on a variable ballast system for deep-sea manned submersibles. Journal of Marine Science and Application, 7(4):255-260.

[16]RomanovVS, GoldsteinVG, 2018. The dynamic improvement methods of energy efficiency and reliability of oil production submersible electric motors. Journal of Physics: Conference Series, 944:012099.

[17]SmithKL, TealJM, 1973. Deep-sea benthic community respiration: an in situ study at 1850 meters. Science, 179(4070):282-283.

[18]UmapathyA, BabuSM, VedachalamN, et al., 2019. Influence of deep-sea ambient conditions in the performance of pressure-compensated induction motors. Marine Technology Society Journal, 53(1):67-73.

[19]WangH, ChenJW, WangYH, et al., 2020. Research and analysis of pressure-maintaining trapping instrument for macro-organisms in hadal trenches. Journal of Marine Science and Engineering, 8(8):596.

[20]XuYM, MengDW, LiuYL, et al., 2010. Amelioration research of submersible motor design method. Proceedings of the Asia-Pacific Power and Energy Engineering Conference, p.1-4.

[21]ZhangX, LuanZD, YanJ, et al., 2012. Development of a deep-sea sediment long coring system based on a Jackhammer for R/V Kexue. Proceedings of the Oceans, p.1-6.

[22]ZouJB, QiWJ, XuYX, et al., 2012. Design of deep sea oil-filled brushless DC motors considering the high pressure effect. IEEE Transactions on Magnetics, 48(11):4220-4223.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE