Full Text:   <930>

Summary:  <414>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-01-20

Received: 2022-04-13

Revision Accepted: 2022-10-24

Crosschecked: 2023-02-01

Cited: 0

Clicked: 1004

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu ZHANG

https://orcid.org/0000-0002-0179-6771

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.1 P.56-63

http://doi.org/10.1631/jzus.A2200203


Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation


Author(s):  Yu ZHANG, Shaohao HOU, Songhua MEI, Yanan ZHAO, Dayong LI

Affiliation(s):  College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; more

Corresponding email(s):   zhangyu@upc.edu.cn

Key Words: 


Yu ZHANG, Shaohao HOU, Songhua MEI, Yanan ZHAO, Dayong LI. Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation[J]. Journal of Zhejiang University Science A, 2023, 24(1): 56-63.

@article{title="Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation",
author="Yu ZHANG, Shaohao HOU, Songhua MEI, Yanan ZHAO, Dayong LI",
journal="Journal of Zhejiang University Science A",
volume="24",
number="1",
pages="56-63",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200203"
}

%0 Journal Article
%T Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation
%A Yu ZHANG
%A Shaohao HOU
%A Songhua MEI
%A Yanan ZHAO
%A Dayong LI
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 1
%P 56-63
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200203

TY - JOUR
T1 - Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation
A1 - Yu ZHANG
A1 - Shaohao HOU
A1 - Songhua MEI
A1 - Yanan ZHAO
A1 - Dayong LI
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 1
SP - 56
EP - 63
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200203


Abstract: 
Hydraulic fracturing is a technique for increasing permeability in oil and gas resource development, grouting reinforcement in mine management, and geo-stress measurement. For the purpose of enhancing hydraulic fracturing in horizontal wells, oriented perforating methods have been developed. Fluid is injected into the rock through perforations, which increases fluid pressure within rock and decreases rock temperature. Then, the rock around the perforation is fractured. Therefore, fracture initiation pressure is intimately connected to the physical and mechanical properties, geo-stress, and temperature. Accurate prediction of fracture initiation pressure is crucial in the design and construction of hydraulic fracturing systems. Understanding the properties of the reservoir and state of stress around the wellbore is an effective method to predict fracture initiation.

基于有限体积法的射孔围岩水力压裂起裂数值模拟方法

作者:张玉1,侯绍昊1,梅松华2,赵亚楠2,李大勇1
机构:1中国石油大学(华东),储运与建筑工程学院,中国青岛,266580;2中国电建集团中南勘测设计研究院有限公司,中国长沙,410014
目的:建立射孔围岩水力压裂起裂数值模型,提出基于有限体积法的射孔围岩水力压裂破裂数值模拟方法,从而得到流体压力分布和起裂压力等相关参数及其规律。
创新点:1.运用坐标转换和叠加原理,推导出考虑孔隙度演化的射孔围岩应力分布;2.提出基于有限体积法的射孔围岩水力压裂破裂数值模拟方法。
方法:1.考虑初始地应力、流体渗流和温度传热对射孔围岩的影响,运用坐标转换和叠加原理得到射孔围岩应力分布。2.考虑围岩渗透率和孔隙率的应力敏感性,采用有限容积法对所提出的方程进行解耦确定射孔围岩的流体压力和温度。3.在水力压裂射孔围岩破裂准则的基础上,提出射孔围岩水力压裂破裂数值模拟方法。
结论:1.随着射孔方位角的上升,需要更多的注入时间和更高的流体压力才能达到裂缝的起始;井壁不可渗时的起裂压力更高。2.当井壁不可渗时,流体压力在射孔前呈椭圆形分布,且流体压力从射孔到远处逐渐减少。当井壁是可渗时,流体压力的分布沿着井筒向外扩散。3.渗透率和孔隙度的应力敏感性增加了井周区域的流体压力和渗透率,导致流体流动范围更广,且起裂压力和时间都有所降低。

关键词:水力压裂;射孔围岩;有限容积法;起裂压力

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]FarahaniH, YuM, MiskaS, et al., 2006. Modeling transient thermo-poroelastic effects on 3D wellbore stability. SPE Annual Technical Conference and Exhibition.

[2]HuZ, KlaverJ, SchmatzJ, et al., 2020. Stress sensitivity of porosity and permeability of Cobourg limestone. Engineering Geology, 273:105632.

[3]KurashigeM, 1989. A thermoelastic theory of fluid-filled porous materials. International Journal of Solids and Structures, 25(9):1039-1052.

[4]KurdiM, 2018. A new computational model to predict breakdown pressures in cased and perforated wells in unconventional reservoirs. SPE Annual Technical Conference and Exhibition.

[5]MichaelA, GuptaI, 2020a. Analytical orientation criteria for drilling and completion-induced fracture initiation considering fluid infiltration from the wellbore. Journal of Petroleum Science and Engineering, 190:107033.

[6]MichaelA, GuptaI, 2020b. A semi-analytical modeling approach for hydraulic fracture initiation and orientation in shale reservoirs. Proceedings of the 8th Unconventional Resources Technology Conference.

[7]MorganWE, AralMM, 2015. An implicitly coupled hydro-geomechanical model for hydraulic fracture simulation with the discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences, 73:82-94.

[8]NguyenD, MiskaS, YuMJ, et al., 2010. Modeling thermal effects on wellbore stability. Trinidad and Tobago Energy Resources Conference.

[9]RussellKA, AyanC, HartNJ, et al., 2006. Predicting and preventing wellbore instability: Tullich field development, North Sea. SPE Drilling & Completion, 21(1):12-22.

[10]WangY, DusseaultMB, 2003. A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability. Journal of Petroleum Science and Engineering, 38(3-4):187-198.

[11]WuZ, CuiC, TrivediJ, et al., 2019. Pressure analysis for volume fracturing vertical well considering low-velocity non-Darcy flow and stress sensitivity. Geofluids, Article ID 2046061.

[12]XiBP, ZhaoYS, 2010. Experimental study of thermophysico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure. Chinese Journal of Rock Mechanics and Engineering, 29(6):1245-1252 (in Chinese).

[13]YanX, HuangZQ, ZhangQ, et al., 2020. Numerical investigation of the effect of partially propped fracture closure on gas production in fractured shale reservoirs. Energies, 13(20):5339.

[14]ZengQD, LiuWZ, YaoJ, 2018. Hydro-mechanical modeling of hydraulic fracture propagation based on embedded discrete fracture model and extended finite element method. Journal of Petroleum Science and Engineering, 167:64-77.

[15]ZhangLQ, ZhouJ, HanZH, 2017. Hydraulic fracturing process by using a modified two-dimensional particle flow code-case study. Progress in Computational Fluid Dynamics, An International Journal, 17(1):13.

[16]ZhouSH, HillisRR, SandifordM, 1996. On the mechanical stability of inclined wellbores. SPE Drilling & Completion, 11(2):67-73.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE