CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-03-31
Cited: 0
Clicked: 1067
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-1946-7252
Chen LING, Aiping LIANG, Chaolin LI, Wenhui WANG. Coupling functional anodes with natural air-diffused cathodes enables highly efficient hydrogen peroxide electrosynthesis[J]. Journal of Zhejiang University Science A, 2023, 24(4): 377-386.
@article{title="Coupling functional anodes with natural air-diffused cathodes enables highly efficient hydrogen peroxide electrosynthesis",
author="Chen LING, Aiping LIANG, Chaolin LI, Wenhui WANG",
journal="Journal of Zhejiang University Science A",
volume="24",
number="4",
pages="377-386",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200566"
}
%0 Journal Article
%T Coupling functional anodes with natural air-diffused cathodes enables highly efficient hydrogen peroxide electrosynthesis
%A Chen LING
%A Aiping LIANG
%A Chaolin LI
%A Wenhui WANG
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 4
%P 377-386
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200566
TY - JOUR
T1 - Coupling functional anodes with natural air-diffused cathodes enables highly efficient hydrogen peroxide electrosynthesis
A1 - Chen LING
A1 - Aiping LIANG
A1 - Chaolin LI
A1 - Wenhui WANG
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 4
SP - 377
EP - 386
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200566
Abstract: electrosynthesis of hydrogen peroxide (H2O2) is a decentralized production method with excellent application prospects. Coupling anodes with cathodes can achieve highly efficient electrosynthesis of hydrogen peroxide. In this study, we prepared an anode for H2O2 electrosynthesis via the two-electron water oxidation reaction (2e-WOR) by modifying carbon fiber paper with self-assembling monolayers. In addition, a natural air-diffused cathode loaded with polytetrafluoroethylene/carbon black using carbon cloth as substrate was prepared to combine with the modified anode to produce H2O2 simultaneously. The total current efficiency of the anode and cathode reached 152.9%, and the H2O2 production rate was as high as 38 µmol/min at 2.8 V vs. reversible hydrogen electrodes (RHE) in a Nafion 117 membrane-separated electrolyzer. This work reported a novel carbon-based 2e-WOR catalyst and laid a theoretical foundation for the simultaneous electrosynthesis of H2O2 with an anode and cathode.
[1]ArbabS, ZeinolebadiA, 2013. A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polymer Degradation and Stability, 98(12):2537-2545.
[2]Campos-MartinJM, Blanco-BrievaG, FierroJLG, 2006. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 45(42):6962-6984.
[3]CastilloGA, WilsonL, EfimenkoK, et al., 2016. Amidation of polyesters is slow in nonaqueous solvents: efficient amidation of poly(ethylene terephthalate) with 3-aminopropyltriethoxysilane in water for generating multifunctional surfaces. ACS Applied Materials & Interfaces, 8(51):35641-35649.
[4]EdwardsJK, HutchingsGJ, 2008. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angewandte Chemie International Edition, 47(48):9192-9198.
[5]FanL, BaiXW, XiaC, et al., 2022. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 13(1):2668.
[6]FangCQ, WangJL, ZhangT, 2014. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent. Applied Surface Science, 321:1-9.
[7]FukuK, MiyaseY, MisekiY, et al., 2016. Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect, 1(18):5721-5726.
[8]FukuK, MiyaseY, MisekiY, et al., 2017. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chemistry-An Asian Journal, 12(10):1111-1119.
[9]GopakumarA, RenP, ChenJH, et al., 2022. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. Journal of the American Chemical Society, 144(6):2603-2613.
[10]HageR, LienkeA, 2006. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angewandte Chemie International Edition, 45(2):206-222.
[11]HanGW, XuFY, ChengB, et al., 2022. Enhanced photocatalytic H2O2 production over inverse opal ZnO@polydopamine S-scheme heterojunctions. Acta Physico-Chimica Sinica, 38(7):2112037 (in Chinese).
[12]KellySR, ShiXJ, BackS, et al., 2019. ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catalysis, 9(5):4593-4599.
[13]KosakaK, YamadaH, ShishidaK, et al., 2001. Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products. Water Research, 35(15):3587-3594.
[14]LiLJ, HuZF, YuJC, 2020. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angewandte Chemie International Edition, 59(46):20538-20544.
[15]LiLJ, XuLP, ChanAWM, et al., 2022. Direct hydrogen peroxide synthesis on a Sn-doped CuWO4/Sn anode and an air-breathing cathode. Chemistry of Materials, 34(1):63-71.
[16]LuZY, ChenGX, SiahrostamiS, et al., 2018. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 1(2):156-162.
[17]LuoHJ, LiCL, SunX, et al., 2017. Cathodic indirect oxidation of organic pollutant paired to anodic persulfate production. Journal of Electroanalytical Chemistry, 792:110-116.
[18]MaJ, ChoudhuryNA, SahaiY, 2010. A comprehensive review of direct borohydride fuel cells. Renewable and Sustainable Energy Reviews, 14(1):183-199.
[19]MavrikisS, GöltzM, PerrySC, et al., 2021. Effective hydrogen peroxide production from electrochemical water oxidation. ACS Energy Letters, 6(7):2369-2377.
[20]PangotraD, CsepeiLI, RothA, et al., 2022. Anodic production of hydrogen peroxide using commercial carbon materials. Applied Catalysis B: Environmental, 303:120848.
[21]PapiyaF, DasS, PattanayakP, et al., 2019. The fabrication of silane modified graphene oxide supported Ni-Co bimetallic electrocatalysts: a catalytic system for superior oxygen reduction in microbial fuel cells. International Journal of Hydrogen Energy, 44(47):25874-25893.
[22]ParkSY, AbroshanH, ShiXJ, et al., 2019. CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2. ACS Energy Letters, 4(1):352-357.
[23]SamantaC, ChoudharyVR, 2007. Direct formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 in aqueous acidic reaction medium over halide-containing Pd/SiO2 catalytic system. Catalysis Communications, 8(12):2222-2228.
[24]SchwartzDK, 2001. Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry, 52:107-137.
[25]ShiXJ, SiahrostamiS, LiGL, et al., 2017. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nature Communications, 8(1):701.
[26]ShiXJ, ZhangYR, SiahrostamiS, et al., 2018. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2. Advanced Energy Materials, 8(23):1801158.
[27]ShiXJ, BackS, GillTM, et al., 2021. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem, 7(1):38-63.
[28]SiahrostamiS, Verdaguer-CasadevallA, KaramadM, et al., 2013. Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 12(12):1137-1143.
[29]SosaN, ChanlekN, WittayakunJ, 2020. Facile ultrasound-assisted grafting of silica gel by aminopropyltriethoxysilane for aldol condensation of furfural and acetone. Ultrasonics Sonochemistry, 62:104857.
[30]TanevPT, ChibweM, PinnavaiaTJ, 1994. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 368(6469):321-323.
[31]TrzcińskiK, SzkodaM, SzulcK, et al., 2019. The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active photoanodes for photoelectrochemical water oxidation. Electrochimica Acta, 295:410-417.
[32]VargaM, IzakT, VretenarV, et al., 2017. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon, 111:54-61.
[33]VoTG, TaiY, ChiangCY, 2019. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Applied Catalysis B: Environmental, 243:657-666.
[34]WenFC, LiSRGG, ChenY, et al., 2022. Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg-H2O2 semi-fuel cell. Rare Metals, 41(8):2655-2663.
[35]XiaC, BackS, RingeS, et al., 2020. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nature Catalysis, 3(2):125-134.
[36]YangSQ, CuiYH, LiuYY, et al., 2018. Electrochemical generation of persulfate and its performance on 4-bromophenol treatment. Separation and Purification Technology, 207:461-469.
[37]ZhangQZ, ZhouMH, RenGB, et al., 2020. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nature Communications, 11(1):1731.
[38]ZhongRS, QinYH, NiuDF, et al., 2013. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. Journal of Power Sources, 225:192-199.
Open peer comments: Debate/Discuss/Question/Opinion
<1>