Full Text:   <742>

Summary:  <290>

CLC number: 

On-line Access: 2024-03-13

Received: 2023-09-06

Revision Accepted: 2023-10-10

Crosschecked: 2024-03-13

Cited: 0

Clicked: 979

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ye SHI

https://orcid.org/0000-0002-5228-1604

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.3 P.183-205

http://doi.org/10.1631/jzus.A2300457


Recent progress in the development of dielectric elastomer materials and their multilayer actuators


Author(s):  Shengchao JIANG, Junbo PENG, Lvting WANG, Hanzhi MA, Ye SHI

Affiliation(s):  ZJU-UIUC Institute, Zhejiang University, Jiaxing 314400, China; more

Corresponding email(s):   yeshi@intl.zju.edu.cn, mahanzhi@zju.edu.cn

Key Words:  Dielectric elastomer actuator (DEA), Dielectric elastomer (DE), Material synthesis, Multilayer stacking method


Share this article to: More |Next Article >>>

Shengchao JIANG, Junbo PENG, Lvting WANG, Hanzhi MA, Ye SHI. Recent progress in the development of dielectric elastomer materials and their multilayer actuators[J]. Journal of Zhejiang University Science A, 2024, 25(3): 183-205.

@article{title="Recent progress in the development of dielectric elastomer materials and their multilayer actuators",
author="Shengchao JIANG, Junbo PENG, Lvting WANG, Hanzhi MA, Ye SHI",
journal="Journal of Zhejiang University Science A",
volume="25",
number="3",
pages="183-205",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300457"
}

%0 Journal Article
%T Recent progress in the development of dielectric elastomer materials and their multilayer actuators
%A Shengchao JIANG
%A Junbo PENG
%A Lvting WANG
%A Hanzhi MA
%A Ye SHI
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 3
%P 183-205
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300457

TY - JOUR
T1 - Recent progress in the development of dielectric elastomer materials and their multilayer actuators
A1 - Shengchao JIANG
A1 - Junbo PENG
A1 - Lvting WANG
A1 - Hanzhi MA
A1 - Ye SHI
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 3
SP - 183
EP - 205
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300457


Abstract: 
Dielectric elastomers (DEs) have emerged as one of the most promising artificial muscle technologies, due to their exceptional properties such as large actuation strain, fast response, high energy density, and flexible processibility for various configurations. Over the past two decades, researchers have been working on developing DE materials with improved properties and exploring innovative applications of dielectric elastomer actuators (DEAs). This review article focuses on two main topics: recent material innovation of DEs and development of multilayer stacking processes for DEAs, which are important to promoting commercialization of DEs. It begins by explaining the working principle of a DEA. Then, recently developed strategies for preparing new DE materials are introduced, including reducing mechanical stiffness, increasing dielectric permittivity, suppressing viscoelasticity loss, and mitigating electromechanical instability without pre-stretching. In the next section, different multilayer stacking methods for fabricating multilayer DEAs are discussed, including conventional dry stacking, wet stacking, a novel dry stacking method, and micro-fabrication-enabled stacking techniques. This review provides a comprehensive and up-to-date overview of recent developments in high-performance DE materials and multilayer stacking methods. It highlights the progress made in the field and also discusses potential future directions for further advancements.

介电弹性体材料及其驱动器多层堆叠工艺研究进展

作者:蒋升超1,4,彭俊博1,2,4,王吕婷1,3,马涵之1,石烨1
机构:1浙江大学,伊利诺伊大学厄巴纳香槟校区联合学院,中国嘉兴,314400;2浙江大学,机械工程学院,中国杭州,310058;3浙江大学,高分子科学与工程系,中国杭州,310058
概要:介电弹性体(DE)具有驱动应变大、响应快、能量密度高、可灵活处理各种配置等特点,已成为最具前景的人工肌肉技术之一。在过去的二十年中,研究人员一直致力于开发性能改善的DE材料,并探索介电弹性体驱动器(DEA)的创新应用。本文重点讨论了两大主题:介电弹性体的材料创新和介电弹性体驱动器多层堆叠工艺的发展,这对推动介电弹性体的商业化应用具有重要意义。本文对高性能介电弹性体材料和多层堆叠方法的最新进展进行了综述,强调了在该领域取得的进展,并讨论了未来潜在的研究方向。在广泛的商业应用之前,DE仍有几个问题需要解决。第一,设计能够在高驱动频率(100 Hz量级)下保持大而稳定驱动应变(超过100%)的DE材料。第二,解决DE和DEA长时间使用的稳定性。为了提高寿命,应仔细研究失效机理,并根据机理适当调整DE材料的介电性能。第三,需要开发具有高环境耐受性的DE材料。最后,需要解决高电压驱动导致的安全问题。叠层DE驱动器(MDEA)的开发与DE的材料创新同样重要,但MDEA的制备仍存在许多挑战。适用于超薄DE薄膜堆叠的叠层工艺需要被探索。此外,提高当前叠层方法的扩展性也很重要,以兼容大规模制造工艺。

关键词:介电弹性体驱动器;介电弹性体;材料合成;叠层方法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AdeliY, OwusuF, NüeschFA, et al., 2023. On-demand cross-linkable bottlebrush polymers for voltage-driven artificial muscles. ACS Applied Materials & Interfaces, 15(16):20410-20420.

[2]AraromiOA, ConnAT, LingCS, et al., 2011. Spray deposited multilayered dielectric elastomer actuators. Sensors and Actuators A: Physical, 167(2):459-467.

[3]AzougA, NevièreR, Pradeilles-DuvalRM, et al., 2014. Influence of crosslinking and plasticizing on the viscoelasticity of highly filled elastomers. Journal of Applied Polymer Science, 131(12):40392.

[4]BrochuP, StoyanovH, NiuX, et al., 2013. All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Materials and Structures, 22(5):055022.

[5]ChenYF, ZhaoHC, MaoJ, et al., 2019. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 575(7782):324-329.

[6]ChortosA, HajiesmailiE, MoralesJ, et al., 2020. 3D printing of interdigitated dielectric elastomer actuators. Advanced Functional Materials, 30(1):1907375.

[7]DannerPM, IacobM, SassoG, et al., 2022. Solvent-free synthesis and processing of conductive elastomer composites for green dielectric elastomer transducers. Macromolecular Rapid Communications, 43(6):2100823.

[8]DickinsonMH, FarleyCT, FullRJ, et al., 2000. How animals move: an integrative view. Science, 288(5463):100-106.

[9]DudutaM, WoodRJ, ClarkeDR, 2016. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Advanced Materials, 28(36):8058-8063.

[10]DudutaM, HajiesmailiE, ZhaoHC, et al., 2019. Realizing the potential of dielectric elastomer artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 116(7):2476-2481.

[11]DünkiSJ, KoYS, NüeschFA, et al., 2015. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields. Advanced Functional Materials, 25(16):2467-2475.

[12]FuHB, XuH, LiuY, et al., 2022. A continuous spatial confining process towards high electrical conductivity of elastomer composites with a low percolation threshold. Composites Science and Technology, 218:109155.

[13]FuHB, JiangY, LvJ, et al., 2023. Multilayer dielectric elastomer with reconfigurable electrodes for artificial muscle. Advanced Science, 10(9):2206094.

[14]GalantiniF, BianchiS, CastelvetroV, et al., 2013. Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance. Smart Materials and Structures, 22(5):055025.

[15]GuoYG, LiuLW, LiuYJ, et al., 2021. Review of dielectric elastomer actuators and their applications in soft robots. Advanced Intelligent Systems, 3(10):2000282.

[16]GuoYX, QinQC, HanZQ, et al., 2023. Dielectric elastomer artificial muscle materials advancement and soft robotic applications. SmartMat, 4(4):e1203.

[17]HaSM, YuanW, PeiQB, et al., 2007. Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain. Smart Materials and Structures, 16(2):S280-S287.

[18]HajiesmailiE, ClarkeDR, 2019. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 10(1):183.

[19]HajiesmailiE, LarsonNM, LewisJA, et al., 2022. Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators. Science Advances, 8(28):eabn9198.

[20]HanZQ, PengZH, GuoYX, et al., 2023. Hybrid fabrication of prestrain-locked acrylic dielectric elastomer thin films and multilayer stacks. Macromolecular Rapid Communications, 44(15):2300160.

[21]HuangYH, XuZW, ShiXH, et al., 2022. Study on the improved electromechanical properties of composited dielectric elastomer by tailoring three-dimensional segregated multi-walled carbon nanotube (MWCNT) network. Composites Science and Technology, 223:109424.

[22]IacobM, VermaA, BuchnerT, et al., 2022. Slot-die coating of an on-the-shelf polymer with increased dielectric permittivity for stack actuators. ACS Applied Polymer Materials, 4(1):150-157.

[23]JiangL, ZhouY, ChenS, et al., 2018. Electromechanical instability in silicone-and acrylate-based dielectric elastomers. Journal of Applied Polymer Science, 135(9):45733.

[24]KovacsG, DüringL, MichelS, et al., 2009. Stacked dielectric elastomer actuator for tensile force transmission. Sensors and Actuators A: Physical, 155(2):299-307.

[25]LiZY, ShengMP, WangMQ, et al., 2018. Stacked dielectric elastomer actuator (SDEA): casting process, modeling and active vibration isolation. Smart Materials and Structures, 27(7):075023.

[26]LiuX, YuLY, NieY, et al., 2019. Silicone elastomers with high-permittivity ionic liquids loading. Advanced Engineering Materials, 21(10):1900481.

[27]LöweC, ZhangX, KovacsG, 2005. Dielectric elastomers in actuator technology. Advanced Engineering Materials, 7(5):361-367.

[28]MirvakiliSM, HunterIW, 2018. Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 30(6):1704407.

[29]NiYF, YangD, WeiQG, et al., 2020. Plasticizer-induced enhanced electromechanical performance of natural rubber dielectric elastomer composites. Composites Science and Technology, 195:108202.

[30]NiuXF, StoyanovH, HuW, et al., 2013. Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching. Journal of Polymer Science Part B: Polymer Physics, 51(3):197-206.

[31]O’HalloranA, O’MalleyF, McHughP, 2008. A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 104(7):071101.

[32]PelrineR, KornbluhR, PeiQB, et al., 2000a. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454):836-839.

[33]PelrineR, KornbluhR, KofodG, 2000b. High-strain actuator materials based on dielectric elastomers. Advanced Materials, 12(16):1223-1225.

[34]PalmićTB, SlavičJ, 2022. Single-process 3D-printed stacked dielectric actuator. International Journal of Mechanical Sciences, 230:107555.

[35]PlanteJS, DubowskyS, 2006. Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids and Structures, 43(25-26):7727-7751.

[36]QiuY, ZhangE, PlamthottamR, et al., 2019. Dielectric elastomer artificial muscle: materials innovations and device explorations. Accounts of Chemical Research, 52(2):316-325.

[37]ReitelshöferS, GöttlerM, SchmidtP, et al., 2016. Aerosol-jet-printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. Proceedings of SPIE 9798, Electroactive Polymer Actuators and Devices, article 97981Y.

[38]RenZJ, KimS, JiX, et al., 2022. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators. Advanced Materials, 34(7):2106757.

[39]RomasantaLJ, HernándezM, López-ManchadoMA, et al., 2011. Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Research Letters, 6(1):508.

[40]RomasantaLJ, Lopez-ManchadoMA, VerdejoR, 2015. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Progress in Polymer Science, 51:188-211.

[41]SheimaY, VenkatesanTR, FrauenrathH, et al., 2023. Synthesis of polysiloxane elastomers modified with sulfonyl side groups and their electromechanical response. Journal of Materials Chemistry C, 11(22):7367-7376.

[42]ShiY, AskounisE, PlamthottamR, et al., 2022. A processable, high-performance dielectric elastomer and multilayering process. Science, 377(6602):228-232.

[43]SonJ, LeeS, BaeGY, et al., 2023. Skin-mountable vibrotactile stimulator based on laterally multilayered dielectric elastomer actuators. Advanced Functional Materials, 33(23):2213589.

[44]SuS, HeT, YangH, 2023. 3D printed multilayer dielectric elastomer actuators. Smart Materials and Structures, 32(3):035021.

[45]SureshJN, AriefI, NaskarK, et al., 2023. The role of chemical microstructures and compositions on the actuation performance of dielectric elastomers: a materials research perspective. Nano Select, 4(5):289-315.

[46]TanMWM, ThangavelG, LeePS, 2019. Enhancing dynamic actuation performance of dielectric elastomer actuators by tuning viscoelastic effects with polar crosslinking. NPG Asia Materials, 11(1):62.

[47]TangC, DuBY, JiangSW, et al., 2023. A review on high-frequency dielectric elastomer actuators: materials, dynamics, and applications. Advanced Intelligent Systems, in press.

[48]TangDY, ZhangJS, ZhouDR, et al., 2005. Influence of BaTiO3 on damping and dielectric properties of filled polyurethane/unsaturated polyester resin interpenetrating polymer networks. Journal of Materials Science, 40(13):3339-3345.

[49]TuguiC, SerbuleaMS, CazacuM, 2019. Preparation and characterisation of stacked planar actuators. Chemical Engineering Journal, 364:217-225.

[50]Vatankhah-VarnoosfaderaniM, DanielWFM, ZhushmaAP, et al., 2017. Bottlebrush elastomers: a new platform for freestanding electroactuation. Advanced Materials, 29(2):1604209.

[51]VudayagiriS, ZakariaS, YuLY, et al., 2014. High breakdown-strength composites from liquid silicone rubbers. Smart Materials and Structures, 23(10):105017.

[52]WangH, TanMWM, PohWC, et al., 2023. A highly stretchable, self-healable, transparent and solid-state poly (ionic liquid) filler for high-performance dielectric elastomer actuators. Journal of Materials Chemistry A, 11(26):14159-14168.

[53]YinLJ, ZhaoY, ZhuJ, et al., 2021. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nature Communications, 12(1):4517.

[54]ZhangFX, LiTF, LuoYW, 2018. A new low moduli dielectric elastomer nano-structured composite with high permittivity exhibiting large actuation strain induced by low electric field. Composites Science and Technology, 156:151-157.

[55]ZhangH, DüringL, KovacsG, et al., 2010. Interpenetrating polymer networks based on acrylic elastomers and plasticizers with improved actuation temperature range. Polymer International, 59(3):384-390.

[56]ZolfagharianA, KouzaniAZ, KhooSY, et al., 2016. Evolution of 3D printed soft actuators. Sensors and Actuators A: Physical, 250:258-272.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE