Full Text:   <5697>

CLC number: X5

On-line Access: 

Received: 2008-02-05

Revision Accepted: 2008-02-18

Crosschecked: 0000-00-00

Cited: 183

Clicked: 8719

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.3 P.165-191


Phytate: impact on environment and human nutrition. A challenge for molecular breeding

Author(s):  Lisbeth BOHN, Anne S. MEYER, Sø,ren K. RASMUSSEN

Affiliation(s):  Department of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; more

Corresponding email(s):   skr@life.ku.dk

Key Words:  Phytase, Phytic acid, Iron bioavailability, Antinutritional factor, Purple acid phosphatase, Cereal

Share this article to: More |Next Article >>>

Lisbeth BOHN, Anne S. MEYER, Søren K. RASMUSSEN. Phytate: impact on environment and human nutrition. A challenge for molecular breeding[J]. Journal of Zhejiang University Science B, 2008, 9(3): 165-191.

@article{title="Phytate: impact on environment and human nutrition. A challenge for molecular breeding",
author="Lisbeth BOHN, Anne S. MEYER, Søren K. RASMUSSEN",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Phytate: impact on environment and human nutrition. A challenge for molecular breeding
%A Lisbeth BOHN
%A Anne S. MEYER
%A Sø
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 3
%P 165-191
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0710640

T1 - Phytate: impact on environment and human nutrition. A challenge for molecular breeding
A1 - Lisbeth BOHN
A1 - Anne S. MEYER
A1 - Sø
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 3
SP - 165
EP - 191
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0710640

phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Adams, C.L., Hambidge, M., Raboy, V., Dorsch, J.A., Sian, L., Westcott, J.L., Krebs, N.F., 2002. Zinc absorption from a low-phytic acid maize. American Journal of Clinical Nutrition, 76(3):556-559.

[2] Agostini, J.D., Ida, E.I., 2006. Partially characterization and application of phytase extracted from germinated sunflower seeds. Pesquisa Agropecuaria Brasileira, 41(6):1041-1047.

[3] Agranoff, B.W., 1978. Textbook errors—Cyclitol confusion. Trends in Biochemical Sciences, 3(12):N283-N285.

[4] Al-Wahsh, I.A., Horner, H.T., Palmer, R.G., Reddy, M.B., Massey, L.K., 2005. Oxalate and phytate of soy foods. Journal of Agricultural and Food Chemistry, 53(14):5670-5674.

[5] Anderson, G.J., Frazer, D.M., Mckie, A.T., Vulpe, C.D., Smith, A., 2005. Mechanisms of haem and non-haem iron absorption: Lessons from inherited disorders of iron metabolism. Biometals, 18(4):339-348.

[6] Anderson, R.L., Wolf, W.J., 1995. Compositional changes in trypsin-inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of Nutrition, 125(3):S581-S588.

[7] Andlid, T.A., Veide, J., Sandberg, A.S., 2004. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. International Journal of Food Microbiology, 97(2):157-169.

[8] Andrews, N.C., 1999. The iron transporter DMT1. International Journal of Biochemistry and Cell Biology, 31(10):991-994.

[9] Andrews, N.C., Schmidt, P.J., 2007. Iron homeostasis. Annual Review of Physiology, 69(1):69-85.

[10] Andriotis, V.M.E., Ross, J.D., 2003. Isolation and characterisation of phytase from dormant Corylus avellana seeds. Phytochemistry, 64(3):689-699.

[11] Angel, R., Tamim, N.M., Applegate, T.J., Dhandu, A.S., Ellestad, L.E., 2002. Phytic acid chemistry: Influence on phytin-phosphorus availability and phytase efficacy. Journal of Applied Poultry Research, 11(4):471-480.

[12] Annibale, B., Capurso, G., Martino, G., Grossi, C., le Fave, G., 2000. Iron deficiency anaemia and Helicobacter pylori infection. International Journal of Antimicrobial Agents, 16(4):515-519.

[13] Antoine, C., Lullien-Pellerin, V., Abecassis, J., Rouau, X., 2004. Effect of wheat bran ball-milling on fragmentation and marker extractability of the aleurone layer. Journal of Cereal Science, 40(3):275-282.

[14] Atanasiu, V., Manolescu, B., Stoian, I., 2007. Hepcidin— central regulator of iron metabolism. European Journal of Haematology, 78(1):1-10.

[15] Bach Kristensen, M., Tetens, I., Alstrup Jorgensen, A.B., Dal Thomsen, A., Milman, N., Hels, O., Sandstrom, B., Hansen, M., 2005. A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. European Journal of Nutrition, 44(6):334-340.

[16] Barrientos, L., Scott, J.J., Murthy, P.P.N., 1994. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiology, 106(4):1489-1495.

[17] Barrientos, L.G., Murthy, P.P.N., 1996. Conformational studies of myo-inositol phosphates. Carbohydrate Research, 296(1-4):39-54.

[18] Batten, G.D., Lott, J.N.A., 1986. The influence of phosphorus-nutrition on the appearance and composition of globoid crystals in wheat aleurone cells. Cereal Chemistry, 63(1):14-18.

[19] Benito, P., Miller, D., 1998. Iron absorption and bioavailability: An updated review. Nutrition Research, 18(3):581-603.

[20] Benzie, I.F., 2003. Evolution of dietary antioxidants. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 136(1):113-126.

[21] Berridge, M.J., Irvine, R.F., 1989. Inositol phosphates and cell signalling. Nature, 341(6239):197-205.

[22] Bezwoda, W., Charlton, R., Bothwell, T., Torrance, J., Mayet, F., 1978. Importance of gastric hydrochloric-acid in absorption of non-heme food iron. Journal of Laboratory and Clinical Medicine, 92(1):108-116.

[23] Bohn, L., Josefsen, L., Meyer, A.S., Rasmussen, S.K., 2007. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. Journal of Agricultural and Food Chemistry, 55(18):7547-7552.

[24] Bohn, T., Davidsson, L., Walczyk, T., Hurrell, R.F., 2004. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. American Journal of Clinical Nutrition, 79(3):418-423.

[25] Boyce, A., Walsh, G., 2006. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 41(5):789-798.

[26] Brady, S.M., Callan, J.J., Cowan, D., McGrane, M., O'Doherty, J.V., 2003. Effect of two microbial phytases on the performance and nutrient retention on grower-finisher pigs fed barley-maize-soyabean meal-based diets. Irish Journal of Agricultural and Food Research, 42(1):101-117.

[27] Brinch-Pedersen, H., Hatzack, F., Sorensen, L.D., Holm, P.B., 2003. Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Research, 12(6):649-659.

[28] Brinch-Pedersen, H., Hatzack, F., Stoger, E., Arcalis, E., Pontopidan, K., Holm, P.B., 2006. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability, and phytate hydrolysis. Journal of Agricultural and Food Chemistry, 54(13):4624-4632.

[29] Brown, E.C., Heit, M.L., Ryan, D.E., 1961. Phytic acid— Analytical investigation. Canadian Journal of Chemistry-Revue Canadienne de Chimie, 39(6):1290-1297.

[30] Brune, M., Rossander, L., Hallberg, L., 1989. Iron-absorption and phenolic compounds—Importance of different phenolic structures. European Journal of Clinical Nutrition, 43(8):547-558.

[31] Brune, M., Rossanderhulten, L., Hallberg, L., Gleerup, A., Sandberg, A.S., 1992. Iron-absorption from bread in humans—Inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. Journal of Nutrition, 122(3):442-449.

[32] Bullock, J.I., Duffin, P.A., Nolan, K.B., Smith, T.K., 1995. Effect of phytate on the in-vitro solubility of Al3+, Ca2+, Hg2+ and Pb2+ as a function of pH at 37 °C. Journal of the Science of Food and Agriculture, 67(4):507-509.

[33] Camara, F., Barbera, R., Amaro, M.A., Farre, R., 2007. Calcium, iron, zinc and copper transport and uptake by Caco-2 cells in school meals: Influence of protein and mineral interactions. Food Chemistry, 100(3):1085-1092.

[34] Cao, L., Wang, W.M., Yang, C.T., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., Li, D.P., 2007. Application of microbial phytase in fish feed. Enzyme and Microbial Technology, 40(4):497-507.

[35] Carpenter, C.E., Mahoney, A.W., 1992. Contributions of heme and nonheme iron to human nutrition. Critcal Reviews in Food Science and Nutrition, 31(4):333-367.

[36] Cheryan, M., 1980. Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition, 13(4):297-335.

[37] Cheryan, M., Anderson, F.W., Grynspan, F., 1983. Magnesium-phytate complexes—Effect of pH and molar ratio on solubility characteristics. Cereal Chemistry, 60(3):235-237.

[38] Cho, J., Choi, K., Darden, T., Reynolds, P.R., Petitte, J.N., Shears, S.B., 2006. Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet’s “phosphate crisis”. Journal of Biotechnology, 126(2):248-259.

[39] Collatz, F., Bailey, C., 1921. The activity of phytase as determined by the specific conductivity of phytin-phytase solutions. The Journal of Industrial and Engineering Chemistry, 13(4):317-321.

[40] Conrad, M.E., Umbreit, J.N., 2002. Pathways of iron absorption. Blood Cells Molecules and Diseases, 29(3):336-355.

[41] Conway, R.E., Powell, J.J., Geissler, C.A., 2007. A food-group based algorithm to predict non-heme iron absorption. International Journal of Food Sciences and Nutrition, 58(3):29-41.

[42] Costello, A.J.R., Glonek, T., Myers, T.C., 1976. P-31 nuclear magnetic resonance-pH titrations of myoinositol hexaphosphate. Carbohydrate Research, 46(2):159-171.

[43] Cowieson, A.J., Acamovic, T., Bedford, M.R., 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. British Poultry Science, 45(1):101-108.

[44] Davidsson, L., Almgren, A., Juillerat, M.A., Hurrell, R.F., 1995. Manganese absorption in humans—The effect of phytic acid and ascorbic-acid in soy formula. American Journal of Clinical Nutrition, 62(5):984-987.

[45] Dionisio, G., Holm, P.B., Brinch-Pedersen, H., 2007. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination. Plant Biotechnology Journal, 5(2):325-338.

[46] Dungelhoef, M., Rodehutscord, M., Spiekers, H., Pfeffer, E., 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology, 49(1-2):1-10.

[47] Efanov, A.M., Zaitsev, S.V., Berggren, P.O., 1997. Inositol hexakisphosphate stimulates non-Ca2+-mediated and primes Ca2+-mediated exocytosis of insulin by activation of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 94(9):4435-4439.

[48] Egli, I., Davidsson, L., Juillerat, M.A., Barclay, D., Hurrell, R.F., 2002. The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. Journal of Food Science, 67(9):3484-3488.

[49] Egli, I., Davidsson, L., Zeder, C., Walczyk, T., Hurrell, R., 2004. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. Journal of Nutrition, 134(5):1077-1080.

[50] Engle-Stone, R., Yeung, A., Welch, R., Glahn, R., 2005. Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. Journal of Agricultural and Food Chemistry, 53(26):10276-10284.

[51] Filikov, A.V., James, T.L., 1998. Structure-based design of ligands for protein basic domains: Application to the HIV-1 Tat protein. Journal of Computer-Aided Molecular Design, 12(3):229-240.

[52] Gharib, A.G., Mohseni, S.G., Mohajer, M., Gharib, M., 2006. Bioavailability of essential trace elements in the presence of phytate, fiber and calcium. Journal of Radioanalytical and Nuclear Chemistry, 270(1):209-215.

[53] Gibson, D.M., Ullah, A.H.J., 1988. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Archives of Biochemistry and Biophysics, 260(2):503-513.

[54] Gibson, R.S., Perlas, L., Hotz, C., 2006. Improving the bioavailability of nutrients in plant foods at the household level. Proceedings of the Nutrition Society, 65(2):160-168.

[55] Gillespie, J., Rogers, S.W., Deery, M., Dupree, P., Rogers, J.C., 2005. A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. Plant Journal, 41(3):429-441.

[56] Glahn, R.P., Wortley, G.M., South, P.K., Miller, D.D., 2002. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: Studies using an in vitro digestion/Caco-2 cell model. Journal of Agricultural and Food Chemistry, 50(2):390-395.

[57] Goel, M., Sharma, C.B., 1979. Multiple forms of phytase in germinating cotyledons of cucurbita-maxima. Phyto-chemistry, 18(12):1939-1942.

[58] Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W., Fan, M.Z., Hayes, M.A., Laursen, J., Hjorth, J.P., Hacker, R.R., Phillips, J.P., Forsberg, C.W., 2001a. Pigs expressing salivary phytase produce low-phosphorus manure (errata). Nature Biotechnology, 19(10):979.

[59] Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W., Fan, M.Z., Hayes, M.A., Laursen, J., Hjorth, J.P., Hacker, R.R., Phillips, J.R., Forsberg, C.W., 2001b. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 19(8):741-745.

[60] Gonnety, J.T., Niamke, S., Meuwiah, F.B., N′guessan Kouadio, E.J., Kouame, L.P., 2007. Purification, kinetic properties and physicochemical characterization of a novel acid phosphatase (AP) from germinating peanut (Arachis hypogaea) seed. Italian Journal of Biochemistry, 56(2):149-157.

[61] Graf, E., Mahoney, J.R., Bryant, R.G., Eaton, J.W., 1984. Iron-catalyzed hydroxyl radical formation—Stringent requirement for free iron coordination site. Journal of Biological Chemistry, 259(6):3620-3624.

[62] Grases, F., Garcia-Ferragut, L., Costa-Bauza, A., 1998. Development of calcium oxalate crystals on urothelium: Effect of free radicals. Nephron, 78(3):296-301.

[63] Grases, F., Simonet, B.M., Prieto, R.M., March, J.G., 2001a. Phytate levels in diverse rat tissues: Influence of dietary phytate. British Journal of Nutrition, 86(2):225-231.

[64] Grases, F., Simonet, B.M., Prieto, R.M., March, J.G., 2001b. Variation of InsP(4), InsP(5) and InsP(6) levels in tissues and biological fluids depending on dietary phytate. Journal of Nutrional Biochemistry, 12(10):595-601.

[65] Grases, F., Simonet, B.M., Vucenik, I., Prieto, R.M., Costa-Bauza, A., March, J.G., Shamsuddin, A.M., 2001c. Absorption and excretion of orally administered inositol hexaphosphate (IP6 or phytate) in humans. Biofactors, 15(1):53-61.

[66] Grases, F., Perello, J., Prieto, R.M., Simonet, B.M., Torres, J.J., 2004. Dietary myo-inositol hexaphosphate prevents dystrophic calcifications in soft tissues: A pilot study in Wistar rats. Life Sciences, 75(1):11-19.

[67] Grases, F., Costa-Bauza, A., Perello, J., Isern, B., Vucenik, I., Valiente, M., Munoz, J.A., Prieto, R.M., 2006. Influence of concomitant food intake on the excretion of orally administered myo-inositol hexaphosphate in humans. Journal of Medicinal Food, 9(1):72-76.

[68] Greiner, R., 2002. Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus var. Amiga). Journal of Agricultural and Food Chemistry, 50(23):6858-6864.

[69] Greiner, R., Alminger, M.L., 1999. Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). Journal of the Science of Food and Agriculture, 79(11):1453-1460.

[70] Greiner, R., Alminger, M.L., 2001. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by phytate-degrading enzymes of cereals. Journal of Food Biochemistry, 25(3):229-248.

[71] Greiner, R., Carlsson, N.G., 2006. Myo-Inositol phosphate isomers generated by the action of a phytate-degrading enzyme from Klebsiella terrigena on phytate. Canadian Journal of Microbiology, 52(8):759-768.

[72] Greiner, R., Konietzny, U., Jany, K.D., 1998. Purification and properties of a phytase from rye. Journal of Food Biochemistry, 22(2):143-161.

[73] Greiner, R., Jany, K.D., Alminger, M.L., 2000. Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (Phytases) from barley (Hordeum vulgare). Journal of Cereal Science, 31(2):127-139.

[74] Greiner, R., Alminger, M.L., Carlsson, N.G., 2001a. Stereospecificity of myo-inositol hexakisphosphate dephos-phorylation by a phytate-degrading enzyme of baker’s yeast. Journal of Agricultural and Food Chemistry, 49(5):2228-2233.

[75] Greiner, R., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M.M., Goyoga, C., 2001b. Purification and characterization of a phytate-degrading enzyme from germinated faba beans (Vicia faba var. Alameda). Journal of Agricultural and Food Chemistry, 49(5):2234-2240.

[76] Grusak, M.A., Pearson, J.N., Marentes, E., 1999. The physiology of micronutrient homeostasis in field crops. Field Crops Research, 60(1-2):41-56.

[77] Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W.F., Nussberger, S., Gollan, J.L., Hediger, M.A., 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388(6641):482-488.

[78] Guttieri, M., Bowen, D., Dorsch, J.A., Raboy, V., Souza, E., 2003. Identification and characterization of a low phytic acid wheat. Crop Science, 44(2):418-424.

[79] Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., Zelder, O., 2005. Biotechnological production and applications of phytases. Applied Microbiology and Biotechnology, 68(5):588-597.

[80] Hallberg, L., Brune, M., Rossander, L., 1989. Iron-absorption in man—ascorbic-acid and dose-dependent inhibition by phytate. American Journal of Clinical Nutrition, 49(1):140-144.

[81] Hallberg, L., Rossander-Hulten, L., Brune, M., Gleerup, A., 1992. Calcium and iron absorption: Mechanism of action and nutritional importance. European Journal of Clinical Nutrition, 46(5):317-327.

[82] Hamada, A., Yamaguchi, K., Harada, M., Horiguchi, K., Takahashi, T., Honda, H., 2006. Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment. Bioscience Biotechnology and Biochemistry, 70(6):1524-1527.

[83] Hambidge, K.M., Krebs, N.F., Westcott, J.L., Sian, L., Miller, L.V., Peterson, K.L., Raboy, V., 2005. Absorption of calcium from tortilla meals prepared from low-phytate maize. American Journal of Clinical Nutrition, 82(1):84-87.

[84] Hara, A., Ebina, S., Kondo, A., Funaguma, T., 1985. A new type of phytase from pollen of Typha-Latifolia l. Agricultural and Biological Chemistry, 49(12):3539-3544.

[85] Haros, M., Rosell, C.M., Benedito, C., 2001a. Fungal phytase as a potential breadmaking additive. European Food Research and Technology, 213(4-5):317-322.

[86] Haros, M., Rosell, C.M., Benedito, C., 2001b. Use of fungal phytase to improve breadmaking performance of whole wheat bread. Journal of Agricultural and Food Chemistry, 49(11):5450-5454.

[87] Hawkins, P.T., Poyner, D.R., Jackson, T.R., Letcher, A.J., Lander, D.A., Irvine, R.F., 1993. Inhibition of iron-catalyzed hydroxyl radical formation by inositol polyphosphates—A possible physiological function for myoinositol hexakisphosphate. Biochemical Journal, 294:929-934.

[88] Hayakawa, T., Toma, Y., Igaue, I., 1989. Purification and characterization of acid-phosphatases with or without phytase activity from rice bran. Agricultural and Biological Chemistry, 53(6):1475-1483.

[89] He, Z.Q., Honeycutt, C.W., Zhang, T.Q., Bertsch, P.M., 2006. Preparation and FT-IR characterization of metal phytate compounds. Journal of Environmental Quality, 35(4):1319-1328.

[90] Hegeman, C.E., Grabau, E.A., 2001. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiology, 126(4):1598-1608.

[91] Hertrampf, E., Olivares, M., 2004. Iron amino acid chelates. International Journal for Vitamin and Nutrition Research, 74(6):435-443.

[92] Holm, P.B., Kristiansen, K.N., Pedersen, H.B., 2002. Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability. Journal of Nutrition, 132(3):514S-516S.

[93] Hubel, F., Beck, E., 1996. Maize root phytase—Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physiology, 112(4):1429-1436.

[94] Huebers, H.A., Csiba, E., Josephson, B., Finch, C.A., 1990. Iron-absorption in the iron-deficient rat. Blut., 60(6):345-351.

[95] Hurrell, R.F., 2004. Phytic acid degradation as a means of improving iron absorption. International Journal for Vitamin and Nutrition Research, 74(6):445-452.

[96] Hurrell, R.F., Reddy, M.B., Juillerat, M.A., Cook, J.D., 2003. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. American Journal of Clinical Nutrition, 77(5):1213-1219.

[97] Hurrell, R.F., Lynch, S., Bothwell, T., Cori, H., Glahn, R., Hertrampf, E., Kratky, Z., Miller, D., Rodenstein, M., Streekstra, H., Teucher, B., Turner, E., Yeung, C.K., Zimmermann, M.B., 2004. Enhancing the absorption of fortification iron—A SUSTAIN Task Force report. International Journal for Vitamin and Nutrition Research, 74(6):387-401.

[98] Iqbal, T.H., Lewis, K.O., Cooper, B.T., 1994. Phytase activity in the human and rat small intestine. Gut, 35(9):1233-1236.

[99] Iskander, F.Y., Morad, M.M., 1986. Multielement determination in wheat and bran. Journal of Radioanalytical and Nuclear Chemistry-Letters, 105(3):151-156.

[100] IUPAC-IUB, 1989. Numbering of atoms in myo-inositol. Recommendations 1988. Nomenclature Committee of the International Union of Biochemistry. Biochem. J., 258(1):1-2.

[101] Jang, D.A., Fadel, J.G., Klasing, K.C., Mireles, A.J.Jr, Ernst, R.A., Young, K.A., Cook, A., Raboy, V., 2003. Evaluation of low-phytate corn and barley on broiler chick performance. Poultry Science, 82(12):1914-1924.

[102] Jariwalla, R.J., 1999. Inositol hexaphosphate (IP6) as an anti-neoplastic and lipid-lowering agent. Anticancer Research, 19(5A):3699-3702.

[103] Jiang, L.W., Phillips, T.E., Hamm, C.A., Drozdowicz, Y.M., Rea, P.A., Maeshima, M., Rogers, S.W., Rogers, J.C., 2001. The protein storage vacuole: A unique compound organelle. Journal of Cell Biology, 155(6):991-1002.

[104] Jog, S.P., Garchow, B.G., Mehta, B.D., Murthy, P.P.N., 2005. Alkaline phytase from lily pollen: Investigation of biochemical properties. Archives of Biochemistry and Biophysics, 440(2):133-140.

[105] Johnson, L.F., Tate, M.E., 1969. Structure of phytic acids. Canadian Journal of Chemistry, 47(1):63-73.

[106] Josefsen, L., Bohn, L., Sørensen, M.B., Rasmussen, S.K., 2007. Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily. Gene, 397(1-2):114-125.

[107] Joyce, C., Deneau, A., Peterson, K., Ockenden, I., Raboy, V., Lott, J.N.A., 2005. The concentrations and distributions of phytic acid phosphorus and other mineral nutrients in wild-type and low phytic acid Js-12-LPA wheat (Triticum aestivum) grain parts. Canadian Journal of Botany-Revue Canadienne de Botanique, 83(12):1599-1607.

[108] Kaur, P., Kunze, G., Satyanarayana, T., 2007. Yeast phytases: Present scenario and future perspectives. Critical Reviews in Biotechnology, 27(2):93-109.

[109] Kemme, P.A., Schlemmer, U., Mroz, Z., Jongbloed, A.W., 2006. Monitoring the stepwise phytate degradation in the upper gastrointestinal tract of pigs. Journal of the Science of Food and Agriculture, 86(4):612-622.

[110] Kerovuo, J., Rouvinen, J., Hatzack, F., 2000. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: Indication of a novel reaction mechanism. Biochemical Journal, 352(3):623-628.

[111] Kim, H., Eskin, N.A.M., 1987. Canola phytase—isolation and characterization. Journal of Food Science, 52(5):1353-1354.

[112] Kim, Y.J., Carpenter, C.E., Mahoney, A.W., 1993. Gastric-acid production, iron status and dietary phytate alter enhancement by meat of iron-absorption in rats. Journal of Nutrition, 123(5):940-946.

[113] Klabunde, T., Strater, N., Krebs, B., Witzel, H., 1995. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid-phosphatases. Febs Letters, 367(1):56-60.

[114] Klabunde, T., Strater, N., Frohlich, R., Witzel, H., Krebs, B., 1996. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. Journal of Molecular Biology, 259(4):737-748.

[115] Knorr, D., Watkins, T.R., Carlson, B.L., 1981. Enzymatic reduction of phytate in whole wheat breads. Journal of Food Science, 46(6):1866-1869.

[116] Kolobkowa, E.B., 1936. Investigation of phytase from wheat flour. Biochimija/Akademija Nauk SSSR, (1):512-524 (in German).

[117] Konietzny, U., Greiner, R., Jany, K.D., 1994. Purification and characterization of a phytase from spelt. Journal of Food Biochemistry, 18(3):165-183.

[118] Krishnamurthy, P., Xie, T., Schuetz, J.D., 2007. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacology and Therapeutics, 114(3):345-358.

[119] Laboure, A.M., Gagnon, J., Lescure, A.M., 1993. Purification and characterization of a phytase (myo-inositol-hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochemical Journal, 295:413-419.

[120] Larsson, O., Barker, C.J., Sjoholm, A., Carlqvist, H., Michell, R.H., Bertorello, A., Nilsson, T., Honkanen, R.E., Mayr, G.W., Zwiller, J., Berggren, P.O., 1997. Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science, 278(5337):471-474.

[121] Layrisse, M., Garcia-Casal, M.N., Solano, L., Baron, M.A., Arguello, F., Llovera, D., Ramirez, J., Leets, I., Tropper, E., 2000. New property of vitamin a and beta-carotene on human iron absorption: Effect on phytate and polyphenols as inhibitors of iron absorption. Archivos Latinoamericanos de Nutricion, 50(3):243-248.

[122] Lee, S.H., Park, H.J., Chun, H.K., Cho, S.Y., Cho, S.M., Lillehoj, H.S., 2006. Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutrition Research, 26(9):474-479.

[123] Leenhardt, F., Levrat-Verny, M.A., Chanliaud, E., Remesy, C., 2005. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. Journal of Agricultural and Food Chemistry, 53(1):98-102.

[124] Lei, X.G., Porres, J.M., 2003. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 25(21):1787-1794.

[125] Li, M.G., Osaki, M., Honma, M., Tadano, T., 1997. Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 43(1):179-190.

[126] Li, X., Wu, Z.Q., Li, W.D., Yan, R.X., Li, L., Li, J., Li, Y.H., Li, M.G., 2007. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Applied Microbiology and Biotechnology, 74(5):1120-1125.

[127] Lim, P.E., Tate, M.E., 1973. Phytases. 2. Properties of phytase fractions F1 and F2 from wheat bran and myoinositol phosphates produced by fraction F2. Biochimica et Biophysica Acta, 302(2):316-328.

[128] Lin, L., Ockenden, I., Lott, J.N.A., 2005. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) grains and grain parts. Canadian Journal of Botany-Revue Canadienne de Botanique, 83(1):131-141.

[129] Liu, J.C., Ockenden, I., Truax, M., Lott, J.N.A., 2004. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Science Research, 14(2):109-116.

[130] Liu, K., Peterson, K.L., Raboy, V., 2007. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. Journal of Agricultural and Food Chemistry, 55(11):4453-4460.

[131] Liu, Z.H., Wang, H.Y., Wang, X.E., Zhang, G.P., Chen, P.D., Liu, D.J., 2006. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). Journal of Cereal Science, 44(2):212-219.

[132] Liu, Z.H., Wang, H.Y., Wang, X.E., Zhang, G.P., Chen, P.D., Liu, D.J., 2007. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. Journal of Cereal Science, 45(3):319-326.

[133] Loewus, F.A., Murthy, P.P.N., 2000. Myo-inositol metabolism in plants. Plant Science, 150(1):1-19.

[134] Lolas, G.M., Markakis, P., 1977. Phytase of navy beans (Phaseolus vulgaris). Journal of Food Science, 42(4):1094-1097.

[135] Lonnerdal, B., 1997. Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy. Physiological Reviews, 77(3):643-669.

[136] Lonnerdal, B., 2000. Dietary factors influencing zinc absorption. Journal of Nutrition, 130(5):1378S-1383S.

[137] Lott, J.N.A., 1980. Protein Bodies. In: Tolbert, N.E. (Ed.), The Biochemistry of Plants. Academic Press, New York, p.589-623.

[138] Lott, J.N.A., Spitzer, E., 1980. X-Ray-analysis studies of elements stored in protein body globoid crystals of Triticum grains. Plant Physiology, 66(3):494-499.

[139] Lott, J.N.A., Ockenden, I., Raboy, V., Batten, G.D., 2000. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 10(1):11-33.

[140] Lott, J.N.A., Ockenden, I., Raboy, V., Batten, G.D., 2001. Phytic acid and phosphorus in crop seeds and fruits: A global estimate (Errata). Seed Science Research, 11(2):181.

[141] Macbeth, M.R., Schubert, H.L., van Demark, A.P., Lingam, A.T., Hill, C.P., Bass, B.L., 2005. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science, 309(5740):1534-1539.

[142] Maddaiah, V.T., Kurnick, A.A., Reid, B.L., 1964. Phytic acid studies. Proceedings of the Society for Experimental Biology and Medicine, 115(2):391-393.

[143] Mahajan, A., Dua, S., 1997. Nonchemical approach for reducing antinutritional factors in rapeseed (Brassica campestris var. Toria) and characterization of enzyme phytase. Journal of Agricultural and Food Chemistry, 45(7):2504-2508.

[144] Mali, G., Sala, M., Arcon, I., Kaucic, V., Kolar, J., 2006. Insight into the short-range structure of amorphous iron inositol hexaphosphate as provided by P-31 NMR and Fe X-ray absorption spectroscopy. Journal of Physical Chemistry B, 110(46):23060-23067.

[145] Mandal, N.C., Biswas, B.B., Burman, S., 1972. Metabolism of inositol phosphates. 3. Isolation, purification and characterization of phytase from germinating mung beans. Phytochemistry, 11(2):495-502.

[146] Masud, T., Mahmood, T., Latif, A., Sammi, S., Hameed, T., 2007. Influence of processing and cooking methodologies for reduction of phytic acid content in wheat (Triticum aestivum) varieties. Journal of Food Processing and Preservation, 31(5):583-594.

[147] Maugenest, S., Martinez, I., Lescure, A.M., 1997. Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochemical Journal, 322:511-517.

[148] McCance, R.A., Widdowson, E.M., 1949. Phytic acid. British Journal of Nutrition, 2(4):401-403.

[149] McCollum, E.V., Hart, E.B., 1908. On the occurrence of a phytin-splitting enzyme in animal tissues. Journal of Biological Chemistry, 4(6):497-500.

[150] Mckie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F., Simpson, R.J., 2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 291(5509):1755-1759.

[151] Mehta, B.D., Jog, S.P., Johnson, S.C., Murthy, P.P.N., 2006. Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP). Phytochemistry, 67(17):1874-1886.

[152] Mendoza, C., Viteri, F.E., Lonnerdal, B., Young, K.A., Raboy, V., Brown, K.H., 1998. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. American Journal of Clinical Nutrition, 68(5):1123-1127.

[153] Mollgaard, H., 1946. On phytic acid, its importance in metabolism and its enzymic cleavage in bread supplemented with calcium. Biochemical Journal, 40(4):589-603.

[154] Morgounov, A., Gomez-Becerra, H.F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., Cakmak, I., 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155(1-2):193-203.

[155] Morrison, I.N., Kuo, J., Obrien, T.P., 1975. Histochemistry and fine-structure of developing wheat aleurone cells. Planta, 123(2):105-116.

[156] Mullaney, E.J., Ullah, A.H., 2003. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 312(1):179-184.

[157] Mulvihill, B., Morrissey, P.A., 1998. An investigation of factors influencing the bioavailability of non-haem iron from meat systems. Irish Journal of Agricultural and Food Research, 37(2):219-226.

[158] Nagai, Y., Funahashi, S., 1962. Phytase (myo-inositolhexaphosphate phosphohydrolase) from wheat bran. 1. Purification and substrate specificity. Agricultural and Biological Chemistry, 26(12):794-803.

[159] Nahm, K.H., 2002. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Critical Reviews in Environmental Science and Technology, 32(1):1-16.

[160] Nakano, T., Joh, T., Tokumoto, E., Hayakawa, T., 1999. Purification and characterization of phytase from bran of Triticum aestivum L. cv. Nourin #61. Food Science and Technology Research, 5(1):18-23.

[161] Nakano, T., Joh, T., Narita, K., Hayakawa, T., 2000. The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from wheat bran of Triticum aestivum L. cv. Nourin #61. Bioscience Biotechnology and Biochemistry, 64(5):995-1003.

[162] Neevel, J.G., 1995. Phytate—A potential conservation agent for the treatment of ink corrosion caused by irongall inks. Restaurator-International Journal for the Preservation of Library and Archival Material, 16(3):143-160.

[163] Nicolas, G., Chauvet, C., Viatte, L., Danan, J.L., Bigard, X., Devaux, I., Beaumont, C., Kahn, A., Vaulont, S., 2002. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. Journal of Clinical Investigation, 110(7):1037-1044.

[164] Nielsen, M.M., Damstrup, M.L., Dal Thomsen, A., Rasmussen, S.K., Hansen, A., 2007. Phytase activity and degradation of phytic acid during rye bread making. European Food Research and Technology, 225(2):173-181.

[165] Nolan, K.B., Duffin, P.A., Mcweeny, D.J., 1987. Effects of phytate on mineral bioavailability—Invitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. Journal of the Science of Food and Agriculture, 40(1):79-85.

[166] Ockenden, I., Dorsch, J.A., Reid, M.M., Lin, L., Grant, L.K., Raboy, V., Lott, J.N.A., 2004. Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Science, 167(5):1131-1142.

[167] Odell, B.L., Deboland, A.R., Koirtyohann, S.R., 1972. Distribution of phytate and nutritionally important elements among morphological components of cereal grains. Journal of Agricultural and Food Chemistry, 20(3):718-721.

[168] Oh, B.C., Choi, W.C., Park, S., Kim, Y.O., Oh, T.K., 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, 63(4):362-372.

[169] Oh, B.C., Kim, M.H., Yun, B.S., Choi, W.C., Park, S.C., Bae, S.C., Oh, T.K., 2006. Ca2+-inositol phosphate chelation mediates the substrate specificity of beta-propeller phytase. Biochemistry, 45(31):9531-9539.

[170] Olczak, M., Morawiecka, B., Watorek, W., 2003. Plant purple acid phosphatases—Genes, structures and biological function. Acta Biochimica Polonica, 50(4):1245-1256.

[171] Onomi, S., Okazaki, Y., Katayama, T., 2004. Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet. Bioscience Biotechnology and Biochemistry, 68(6):1379-1381.

[172] Ostanin, K., van Etten, R.L., 1993. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. Journal of Biological Chemistry, 268(28):20778-20784.

[173] Ostanin, K., Harms, E.H., Stevis, P.E., Kuciel, R., Zhou, M.M., van Etten, R.L., 1992. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. Journal of Biological Chemistry, 267(32):22830-22836.

[174] Peers, F.G., 1953. The phytase of wheat. Biochemical Journal 53(1):102-110.

[175] Perales, S., Barbera, R., Lagarda, M.J., Farre, R., 2006. Fortification of milk with calcium: Effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry 54(13):4901-4906.

[176] Persson, H., Turk, M., Nyman, M., Sandberg, A.S., 1998. Binding of Cu2+, Zn2+ and Cd2+ to inositol tri-, tetra-, penta, and hexaphosphates. Journal of Agricultural and Food Chemistry, 46(8):3194-3200.

[177] Pfeffer, W., 1872. Investigation of the Protein Bodies and the Importance of Aspargins in Seed Germs. In: Pringsheim, N. (Ed.), Annual Science Book of Botany. Verlag von Wilh. Engelmann, Leipzig, p.429-574 (in German).

[178] Phillippy, B.Q., 1998. Purification and catalytic properties of a phytase from scallion (Allium fistulosum L.) leaves. Journal of Agricultural and Food Chemistry, 46(9):3491-3496.

[179] Phillippy, B.Q., 2006. Transport of calcium across Caco-2 cells in the presence of inositol hexakisphosphate. Nutrition Research, 26(3):146-149.

[180] Pontoppidan, K., Pettersson, D., Sandberg, A.S., 2007. The type of thermal feed treatment influences the inositol phosphate composition. Animal Feed Science and Technology, 132(1-2):137-147.

[181] Porres, J.M., Etcheverry, P., Miller, D.D., Lei, X.G., 2001. Phytase and citric acid supplementation in whole-wheat bread improves phytate-phosphorus release and iron dialyzability. Journal of Food Science, 66(4):614-619.

[182] Posternak, S., Posternak, T., 1929. About the configuration of inactive inosite. Helv. Chim. Acta/Soc. Chim. Helv., 12:1165-1181 (in French).

[183] Posternak, T., 1965. Cyclitols. Holden-Day, Inc., San Francisco, CA.

[184] Poulsen, H.D., Johansen, K.S., Hatzack, F., Boisen, S., Rasmussen, S.K., 2001. Nutritional value of low-phytate barley evaluated in rats. Acta Agriculturae Scandinavica Section A-Animal Science, 51(1):53-58.

[185] Raboy, V., 2003. Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64(6):1033-1043.

[186] Raboy, V., 2007. The ABCs of low-phytate crops. Nature Biotechnology, 25(8):874-875.

[187] Raffin, S.B., Woo, C.H., Roost, K.T., Price, D.C., Schmid, R., 1974. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. Journal of Clinical Investigation, 54(6):1344-1352.

[188] Rasmussen, S.K., Johansen, K.S., Sørensen, M.B., 2007. Polynucleotides Encoding Phytase Polypeptides. US Patent 10/275,311(7,186,817).

[189] Reddy, M.B., Hurrell, R.F., Juillerat, M.A., Cook, J.D., 1996. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. American Journal of Clinical Nutrition, 63(2):203-207.

[190] Revy, P.S., Jondreville, C., Dourmad, J.Y., Nys, Y., 2006. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. Journal of Animal Physiology and Animal Nutrition, 90(1-2):50-59.

[191] Rodrigues-Filho, U.P., Vaz, S., Felicissimo, M.P., Scarpellini, M., Cardoso, D.R., Vinhas, R.C.J., Landers, R., Schneider, J.F., McGarvey, B.R., Andersen, M.L., Skibsted, L.H., 2005. Heterometallic manganese/zinc-phytate complex as a model compound for metal storage in wheat grains. Journal of Inorganic Biochemistry, 99(10):1973-1982.

[192] Roughead, Z.K., Zito, C.A., Hunt, J.R., 2005. Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: Comparisons using an intestinal lavage method. American Journal of Clinical Nutrition, 82(3):589-597.

[193] Saiardi, A., Sciambi, C., McCaffery, J.M., Wendland, B., Snyder, S.H., 2002. Inositol pyrophosphates regulate endocytic trafficking. Proceedings of the National Academy of Sciences of the United States of America, 99(22):14206-14211.

[194] Sala, M., Kolar, J., Strlic, M., Kocevar, M., 2006. Synthesis of myo-inositol 1,2,3-tris- and 1,2,3,5-tetrakis(dihydrogen phosphate)s as a tool for the inhibition of iron-gall-ink corrosion. Carbohydrate Research, 341(7):897-902.

[195] Salovaara, S., Alminger, M.L., Eklund-Jonsson, C., Andlid, T., Sandberg, A.S., 2003a. Prolonged transit time through the stomach and small intestine improves iron dialyzability and uptake in vitro. Journal of Agricultural and Food Chemistry, 51(17):5131-5136.

[196] Salovaara, S., Sandberg, A.S., Andlid, T., 2003b. Combined impact of pH and organic acids on iron uptake by Caco-2 cells. Journal of Agricultural and Food Chemistry, 51(26):7820-7824.

[197] Sandberg, A.S., Hulthen, L.R., Turk, M., 1996. Dietary Aspergillus niger phytase increases iron absorption in humans. Journal of Nutrition, 126(2):476-480.

[198] Sandberg, A.S., Brune, M., Carlsson, N.G., Hallberg, L., Skoglund, E., Rossander-Hulthen, L., 1999. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. American Journal of Clinical Nutrition, 70(2):240-246.

[199] Scott, J.J., 1991. Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiology, 95(4):1298-1301.

[200] Selle, P.H., Ravindran, V., 2007. Microbial phytase in poultry nutrition. Animal Feed Science and Technology, 135(1-2):1-41.

[201] Selvam, R., 2002. Calcium oxalate stone disease: Role of lipid peroxidation and antioxidants. Urol. Res., 30(1):35-47.

[202] Shears, S.B., 2004. How versatile are inositol phosphate kinases? Biochemical Journal, 377(2):265-280.

[203] Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J.M., Meeley, R.B., Ertl, D.S., Ranch, J.P., Glassman, K., 2007. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 25(8):930-937.

[204] Shin, S., Ha, N.C., Oh, B.C., Oh, T.K., Oh, B.H., 2001. Enzyme mechanism and catalytic property of beta propeller phytase. Structure, 9(9):851-858.

[205] Siener, R., Heynck, H., Hesse, A., 2001. Calcium-binding capacities of different brans under simulated gastrointestinal pH conditions. In vitro study with Ca-45. Journal of Agricultural and Food Chemistry, 49(9):4397-4401.

[206] Simpson, C.J., Wise, A., 1990. Binding of zinc and calcium to inositol phosphates (phytate) in vitro. British Journal of Nutrition, 64(1):225-232.

[207] Steiner, T., Mosenthin, R., Zimmermann, B., Greiner, R., Roth, S., 2007. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Animal Feed Science and Technology, 133(3-4):320-334.

[208] Stodolak, B., Starzynska, A., Czyszczon, M., Zyla, K., 2007. The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chemistry, 101(3):1041-1045.

[209] Storcksdieck, S., Bonsmann, G., Hurrell, R.F., 2007. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. Journal of Food Science, 72(1):S019-S029.

[210] Strater, N., Klabunde, T., Tucker, P., Witzel, H., Krebs, B., 1995. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science, 268(5216):1489-1492.

[211] Suzuki, U., Yoshimura, K., Takaishi, M., 1907. About the enzyme “phytase”, which splits “anhydro-oxy-methylene diphosphoric acid”. Bulletin of the College of Agriculture, Tokyo Imperial University, 7:503-512 (in German).

[212] Tang, J., Leung, A., Leung, C., Lim, B.L., 2006. Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biology and Biochemistry, 38(6):1316-1324.

[213] Teucher, B., Olivares, M., Cori, H., 2004. Enhancers of iron absorption: Ascorbic acid and other organic acids. International Journal for Vitamin and Nutrition Research, 74(6):403-419.

[214] Thompson, D.B., Erdman, J.W., 1982. Structural model for ferric phytate—Implications for phytic acid analysis. Cereal Chemistry, 59(6):525-528.

[215] Thornton, C.G., Passen, S., 2004. Inhibition of PCR amplification bovine fecal specimens with by phytic acid, and treatment of phytase to reduce inhibition. Journal of Microbiological Methods, 59(1):43-52.

[216] Tomlinson, R.V., Ballou, C.E., 1962. Myoinositol polyphosphate intermediates in dephosphorylation of phytic acid by phytase. Biochemistry, 1(1):166.

[217] Torres, J., Dominguez, S., Cerda, M.F., Obal, G., Mederos, A., Irvine, R.F., Diaz, A., Kremer, C., 2005. Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentainagnesium species under cytosolic/nuclear conditions. Journal of Inorganic Biochemistry, 99(3):828-840.

[218] Tuntawiroon, M., Sritongkul, N., Brune, M., Rossanderhulten, L., Pleehachinda, R., Suwanik, R., Hallberg, L., 1991. Dose-dependent inhibitory effect of phenolic-compounds in foods on nonheme-iron absorption in men. American Journal of Clinical Nutrition, 53(2):554-557.

[219] Turk, M., Sandberg, A.S., 1992. Phytate degradation during breadmaking—Effect of phytase addition. Journal of Cereal Science, 15(3):281-294.

[220] Turk, M., Carlsson, N.G., Sandberg, A.S., 1996. Reduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. Journal of Cereal Science, 23(3):257-264.

[221] Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T., ustin-Phillips, S., 1999. Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochemical and Biophysical Research Communications, 264(1):201-206.

[222] Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T., ustin-Phillips, S., 2002. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochemical and Biophysical Research Communications, 290(4):1343-1348.

[223] Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T., ustin-Phillips, S., 2003. Fungal phyA gene expressed in potato leaves produces active and stable phytase. Biochemical and Biophysical Research Communications, 306(2):603-609.

[224] van Etten, R.L., Davidson, R., Stevis, P.E., MacArthur, H., Moore, D.L., 1991. Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. Journal of Biological Chemistry, 266(4):2313-2319.

[225] Vasca, E., Materazzi, S., Caruso, T., Milano, O., Fontanella, C., Manfredi, C., 2002. Complex formation between phytic acid and divalent metal ions: A solution equilibria and solid state investigation. Analytical and Bioanalytical Chemistry, 374(1):173-178.

[226] Vats, P., Banerjee, U.C., 2004. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzyme and Microbial Technology, 35(1):3-14.

[227] Vats, P., Bhattacharyya, M.S., Banerjee, U.C., 2005. Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution: A biological approach. Critical Reviews in Environmental Science and Technology, 35(5):469-486.

[228] Veide, J., Andlid, T., 2006. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. International Journal of Food Microbiology, 108(1):60-67.

[229] Veiga, N., Torres, J., Dominguez, S., Mederos, A., Irvine, R.F., Diaz, A., Kremer, C., 2006. The behaviour of myo-inositol hexakisphosphate in the presence of magnesium(II) and calcium(II): Protein-free soluble InsP(6) is limited to 49 mu M under cytosolic/nuclear conditions. Journal of Inorganic Biochemistry, 100(11):1800-1810.

[230] Veum, T.L., Ledoux, D.R., Bollinger, D.W., Raboy, V., Cook, A., 2002. Low-phytic acid barley improves calcium and phosphorus utilization and growth performance in growing pigs. Journal of Animal Science 80(10):2663-2670.

[231] Vincent, J.B., Crowder, M.W., Averill, B.A., 1992. Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions. Trends in Biochemical Sciences, 17(3):105-110.

[232] Vohra, P., Gray, G.A., Kratzer, F.H., 1965. Phytic acid-metal complexes. Proceedings of the Society for Experimental Biology and Medicine, 120(2):447-449.

[233] Volkmann, C.J., Chateauneuf, G.M., Pradhan, J., Bauman, A.T., Brown, R.E., Murthy, P.P.N., 2002. Conformational flexibility of inositol phosphates: Influence of structural characteristics. Tetrahedron Letters, 43(27):4853-4856.

[234] Vucenik, I., Shamsuddin, A.M., 2006. Protection against cancer by dietary IP6 and inositol. Nutrition and Cancer, 55(2):109-125.

[235] Wang, Y., Gao, X.R., Su, Q., Wu, W., An, L.J., 2007. Expression of a heat stable phytase from Aspergillus fumigatus in tobacco (Nicotiana tabacum L. cv. NC89). Indian Journal of Biochemistry and Biophysics, 44(1):26-30.

[236] Ward, K.A., 2001. Phosphorus-friendly transgenics. Nature Biotechnology, 19(5):415-416.

[237] WHO, 2002. Reducing Risks, Promoting Healthy Life. In: World Health Report 2002. World Health Organization, Geneva, Switzerland.

[238] Wise, A., Gilburt, D.J., 1983. Accessibility of trace-metals, co-precipitated with calcium phytate, to soluble chelating agents. Nutrition Research, 3(3):321-324.

[239] Wong, P.Y.Y., Kitts, D.D., 2001. An iron binding assay to measure activity of known food sequestering agents: Studies with buttermilk solids. Food Chemistry, 72(2):245-254.

[240] Worthington, M.T., Cohn, S.M., Miller, S.K., Luo, R.Q., Berg, C.L., 2001. Characterization of a human plasma membrane heme transporter in intestinal and hepatocyte cell lines. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(6):G1172-G1177.

[241] Xiang, T., Liu, Q., Deacon, A.M., Koshy, M., Kriksunov, I.A., Lei, X.G., Hao, Q., Thiel, D.J., 2004. Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. Journal of Molecular Biology, 339(2):437-445.

[242] Yeung, C.K., Glahn, R.P., Miller, D.D., 2005. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells. Journal of Agricultural and Food Chemistry, 53(1):132-136.

[243] York, J.D., 2006. Regulation of nuclear processes by inositol polyphosphates. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1761(5-6):552-559.

[244] York, J.D., Odom, A.R., Murphy, R., Ives, E.B., Wente, S.R., 1999. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science, 285(5424):96-100.

[245] Zimmermann, M.B., Hurrell, R.F., 2002. Improving iron, zinc and vitamin A nutrition through plant biotechnology. Current Opinion in Biotechnology, 13(2):142-145.

Open peer comments: Debate/Discuss/Question/Opinion



2010-01-29 10:56:36

This interesting article perfectly describes the impact of phytase on environment and human nutritionpurification. It is very significative and novel research.

Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE