CLC number: R37
On-line Access:
Received: 2008-09-24
Revision Accepted: 2009-01-18
Crosschecked: 2009-04-08
Cited: 10
Clicked: 6708
Li-rong CHEN, Hong-wei ZHOU, Jia-chang CAI, Rong ZHANG, Gong-xiang CHEN. Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate[J]. Journal of Zhejiang University Science B, 2009, 10(5): 348-354.
@article{title="Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate",
author="Li-rong CHEN, Hong-wei ZHOU, Jia-chang CAI, Rong ZHANG, Gong-xiang CHEN",
journal="Journal of Zhejiang University Science B",
volume="10",
number="5",
pages="348-354",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820302"
}
%0 Journal Article
%T Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate
%A Li-rong CHEN
%A Hong-wei ZHOU
%A Jia-chang CAI
%A Rong ZHANG
%A Gong-xiang CHEN
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 5
%P 348-354
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820302
TY - JOUR
T1 - Detection of plasmid-mediated IMP-1 metallo-β-lactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate
A1 - Li-rong CHEN
A1 - Hong-wei ZHOU
A1 - Jia-chang CAI
A1 - Rong ZHANG
A1 - Gong-xiang CHEN
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 5
SP - 348
EP - 354
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820302
Abstract: Objective: To investigate the mechanism of carbapenem resistance and the occurrence of plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in a clinical isolate of Enterobacter cloacae. Methods: An ertapenem-resistant E. cloacae ZY106, which was isolated from liquor puris of a female gastric cancer patient in a Chinese hospital, was investigated. Antibiotic susceptibilities were determined by agar dilution method. Conjugation experiments, isoelectric focusing, polymerase chain reaction (PCR), and DNA sequence analyses of plasmid-mediated carbapenemases and quinolone resistance determinants were preformed to confirm the genotype. outer membrane proteins (OMPs) were examined by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Urea-SDS-PAGE). Results: Minimum inhibitory concentrations (MICs) of imipenem, meropenem, and ertapenem for ZY106 were 2, 4, and 16 μg/ml, respectively. Conjugation studies with Escherichia coli resulted in the transfer of significantly reduced carbapenem susceptibility. ZY106 produced IMP-1 metallo-β-lactamase and CTX-M-3 extended-spectrum β-lactamase, and E. coli transconjugant produced IMP-1. Plasmid-mediated quinolone resistance determinant qnrS1 was detected in ZY106. Transfer of the qnrS1-encoding-plasmid into E. coli by conjugation resulted in intermediate resistance to ciprofloxacin in E. coli transconjugant. Urea-SDS-PAGE analysis of OMPs showed that ZY106 lacked an OMP of approximately 38 kDa. Conclusion: It is the first IMP-1-producing enterobacteriaceae in China and the first report of a clinical isolate that harbors both blaIMP and qnrS genes as well. The blaIMP-1, blaCTX-M-3, and qnrS1 are encoded at three different plasmids. IMP-1 combined with the loss of an OMP possibly resulted in ertapenem resistance and reduced imipenem and meropenem susceptibility in E. cloacae.
[1] Aktas, Z., Bal, C., Midilli, K., Poirel, L., Nordmann, P., 2006. First IMP-1-producing Klebsiella pneumoniae isolate in Turkey. Clin. Microbiol. Infect., 12(7):695-696.
[2] Baldwin, C.M., Lyseng-Williamson, K.A., Keam, S.J., 2008. Meropenem: a review of its use in the treatment of serious bacterial infections. Drugs, 68(6):803-838.
[3] Biendo, M., Canarelli, B., Thomas, D., Rousseau, F., Hamdad, F., Adjide, C., Laurans, G., Eb, F., 2008. Successive emergence of extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital. J. Clin. Microbiol., 46(3): 1037-1144.
[4] Bush, K., Tanaka, S.K., Bonner, D.P., Sykes, R.B., 1985. Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae. Antimicrob. Agents Chemother., 27(4):555-560.
[5] Cai, J.C., Zhou, H.W., Zhang, R., Chen, G.X., 2008. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob. Agents Chemother., 52(6):2014-2018.
[6] Clinical and Laboratory Standards Institute, 2007. Clinical and Laboratory Standards Institute (CLSI) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, M7-A7, 17th Ed. CLSI, Wayne, PA.
[7] Conceição, T., Faria, N., Lito, L., Melo Cristino, J., Salgado, M.J., Duarte, A., 2004. Diversity of chromosomal AmpC beta-lactamases from Enterobacter cloacae isolates in a Portuguese hospital. FEMS Microbiol. Lett., 230(2): 197-202.
[8] Deguchi, T., Yasuda, M., Nakano, M., Ozeki, S., Kanematsu, E., Nishino, Y., Ishihara, S., Kawada, Y., 1997. Detection of mutations in the gyrA and parC genes in quinolone-resistant clinical isolates of Enterobacter cloacae. J. Antimicrob. Chemother., 40(4):543-549.
[9] Deshpande, L.M., Jones, R.N., Fritsche, T.R., Sader, H.S., 2006. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb. Drug Resist., 12(4):223-230.
[10] Hawkey, P.M., Xiong, J., Ye, H., Li, H., M′Zali, F.H., 2001. Occurrence of a new metallo-β-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People’s Republic of China. FEMS Microbiol. Lett., 194(1):53-57.
[11] Herbert, S., Halvorsen, D.S., Leong, T., Franklin, C., Harrington, G., Spelman, D., 2007. Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo-β-lactamase gene blaIMP-4 at a 320-bed tertiary hospital in Australia. Infect. Control Hosp. Epidemiol., 28(1):98-101.
[12] Jeong, S.H., Bae, I.K., Kwon, S.B., Lee, J.H., Song, J.S., Jung, H.I., Sung, K.H., Jang, S.J., Lee, S.H., 2005. Dissemination of transferable CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli in Korea. J. Appl. Microbiol., 98(4):921-927.
[13] Jiang, Y., Zhou, Z., Qian, Y., Wei, Z., Yu, Y., Hu, S., Li, L., 2008. Plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J. Antimicrob. Chemother., 61(5): 1003-1006.
[14] Koh, T.H., Babini, G.S., Woodford, N., Sng, L.H., Hall, L.M., Livermore, D.M., 1999. Carbapenem-hydrolysing IMP-1 β-lactamase in Klebsiella pneumoniae from Singapore. Lancet, 353(9170):2162.
[15] Lee, E.H., Nicolas, M.H., Kitzis, M.D., Pialoux, G., Collatz, E., Gutmann, L., 1991. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob. Agents Chemother., 35(6):1093-1098.
[16] Lee, E.H., Collatz, E., Trias, J., Gutmann, L., 1992. Diffusion of beta-lactam antibiotics into proteoliposomes reconstituted with outer membranes of isogenic imipenem-susceptible and -resistant strains of Enterobacter cloacae. J. Gen. Microbiol., 138(11):2347-2351.
[17] Lincopan, N., McCulloch, J.A., Reinert, C., Cassettari, V.C., Gales, A.C., Mamizuka, E.M., 2005. First isolation of metallo-β-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J. Clin. Microbiol., 43(1):516-519.
[18] Lincopan, N., Leis, R., Vianello, M.A., de Araújo, M.R., Ruiz, A.S., Mamizuka, E.M., 2006. Enterobacteria producing extended-spectrum β-lactamases and IMP-1 metallo-β-lactamases isolated from Brazilian hospitals. J. Med. Microbiol., 55(11):1611-1613.
[19] Liu, Y.F., Yan, J.J., Ko, W.C., Tsai, S.H., Wu, J.J., 2008. Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J. Antimicrob. Chemother., 61(5):1020-1023.
[20] Mathew, A., Harris, A.M., Marshall, M.J., Ross, G.W., 1975. The use of analytical isoelectric focusing for detection and identification of β-lactamase. J. Gen. Microbiol., 88(1):169-178.
[21] Mendes, R.E., Bell, J.M., Turnidge, J.D., Yang, Q., Yu, Y., Sun, Z., Jones, R.N., 2008. Carbapenem-resistant isolates of Klebsiella pneumoniae in China and detection of a conjugative plasmid (blaKPC-2 plus qnrB4) and a blaIMP-4 gene. Antimicrob. Agents Chemother., 52(2):798-799.
[22] Peleg, A.Y., Franklin, C., Bell, J.M., Spelman, D.W., 2005. Dissemination of the metallo-β-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin. Infect. Dis., 41(11):1549-1556.
[23] Queenan, A.M., Bush, K., 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev., 20(3):440-458.
[24] Robicsek, A., Strahilevitz, J., Sahm, D.F., Jacoby, G.A., Hooper, D.C., 2006. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother., 50(8):2872-2874.
[25] Shibata, N., Doi, Y., Yamane, K., Yagi, T., Kurokawa, H., Shibayama, K., Kato, H., Kai, K., Arakawa, Y., 2003. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol., 41(12):5407-5413.
[26] Szabó, D., Silveira, F., Hujer, A.M., Bonomo, R.A., Hujer, K.M., Marsh, J.W., Bethel, C.R., Doi, Y., Deeley, K., Paterson, D.L., 2006. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob. Agents Chemother., 50(8):2833-2835.
[27] Walsh, T.R., 2008. Clinically significant carbapenemases: an update. Curr. Opin. Infect. Dis., 21(4):367-371.
[28] Walsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P., 2005. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev., 18(2):306-325.
[29] Watanabe, M., Iyobe, S., Inoue, M., Mitsuhashi, S., 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 35(1): 147-151.
[30] Woodford, N., Dallow, J.W., Hill, R.L., Palepou, M.F., Pike, R., Ward, M.E., Warner, M., Livermore, D.M., 2007. Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int. J. Antimicrob. Agents, 29(4):456-459.
[31] Wu, J.J., Ko, W.C., Tsai, S.H., Yan, J.J., 2007. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob. Agents Chemother., 51(4):1223-1227.
[32] Wu, J.J., Ko, W.C., Wu, H.M., Yan, J.J., 2008. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital. 1999-2005. J. Antimicrob. Chemother., 61(6): 1234-1239.
[33] Yu, Y.S., Ji, S.J., Chen, Y.G., Zhou, W.L., Wei, Z.Q., Li, L.J., Ma, Y.L., 2007. Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. J. Infect., 54(1):53-57.
[34] Zhang, R., Zhou, H.W., Cai, J.C., Chen, G.X., 2007. Plasmid-mediated carbapenem-hydrolysing β-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J. Antimicrob. Chemother., 59(3):574-576.
[35] Zhang, R., Yang, L., Cai, J.C., Zhou, H.W., Chen, G.X., 2008. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J. Med. Microbiol., 57(Pt 3):332-337.
Open peer comments: Debate/Discuss/Question/Opinion
<1>