CLC number: R541
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-04-13
Cited: 4
Clicked: 6518
Yan-xia Ning, Shun-lin Ren, Feng-di Zhao, Lian-hua Yin. Overexpression of the steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3)[J]. Journal of Zhejiang University Science B, 2010, 11(5): 350-356.
@article{title="Overexpression of the steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3)",
author="Yan-xia Ning, Shun-lin Ren, Feng-di Zhao, Lian-hua Yin",
journal="Journal of Zhejiang University Science B",
volume="11",
number="5",
pages="350-356",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900369"
}
%0 Journal Article
%T Overexpression of the steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3)
%A Yan-xia Ning
%A Shun-lin Ren
%A Feng-di Zhao
%A Lian-hua Yin
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 5
%P 350-356
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900369
TY - JOUR
T1 - Overexpression of the steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3)
A1 - Yan-xia Ning
A1 - Shun-lin Ren
A1 - Feng-di Zhao
A1 - Lian-hua Yin
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 5
SP - 350
EP - 356
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900369
Abstract: Objective: To determine the effect of steroidogenic acute regulatory protein (StAR) overexpression on the levels of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) in an endothelial cell line (bEnd.3). Methods: The StAR gene was induced in bEnd.3 cells with adenovirus infection. The infection efficiency was detected by fluorescence activated cell sorter (FACS) and fluorescence microscopy. The expressions of StAR gene and protein levels were detected by real-time polymerase chain reaction (PCR) and Western blot. The gene and protein levels of ABCA1 and ABCG1 were detected by real-time PCR and Western blot after StAR overexpression. Results: The result shows that StAR was successfully overexpressed in bEnd.3 cells by adenovirus infection. The mRNA and protein expressions of ABCA1 and ABCG1 were greatly increased by StAR overexpression in bEnd.3 cells. Conclusion: Overexpression of StAR increases ABCA1 and ABCG1 expressions in endothelial cells.
[1]Babiker, A., Andersson, O., Lund, E., Xiu, R.J., Deeb, S., Reshef, A., Leitersdorf, E., Diczfalusy, U., Bjorkhem, I., 1997. Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J. Biol. Chem., 272(42):26253-26261.
[2]Brewer, H.B.Jr., Santamarina-Fojo, S., 2003. New insights into the role of the adenosine triphosphate-binding cassette transporters in high-density lipoprotein metabolism and reverse cholesterol transport. Am. J. Cardiol., 91(7A):3E-11E.
[3]Christenson, L.K., Strauss III, J.F., 2000. Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim. Biophys. Acta, 1529(1-3):175-187.
[4]Dubrac, S., Lear, S.R., Ananthanarayanan, M., Balasubramaniyan, N., Bollineni, J., Shefer, S., Hyogo, H., Cohen, D.E., Blanche, P.J., Krauss, R.M., et al., 2005. Role of CYP27A in cholesterol and bile acid metabolism. J. Lipid. Res., 46(1):76-85.
[5]Fu, X., Menke, J.G., Chen, Y., Zhou, G., MacNaul, K.L., Wright, S.D., Sparrow, C.P., Lund, E.G., 2001. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem., 276(42):38378-38387.
[6]Gueguen, Y., Ferrari, L., Souidi, M., Batt, A.M., Lutton, C., Siest, G., Visvikis, S., 2007. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase. Basic. Clin. Pharmacol. Toxicol., 100(6):392-397.
[7]Hall, E., Hylemon, P., Vlahcevic, Z., Mallonee, D., Valerie, K., Avadhani, N., Pandak, W., 2001. Overexpression of CYP27 in hepatic and extrahepatic cells: role in the regulation of cholesterol homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol., 281(1):G293-G301.
[8]Hall, E.A., Ren, S., Hylemon, P.B., Rodriguez-Agudo, D., Redford, K., Marques, D., Kang, D., Gil, G., Pandak, W.M., 2005. Detection of the steroidogenic acute regulatory protein, StAR, in human liver cells. Biochim. Biophys. Acta, 1733(2-3):111-119.
[9]Hassan, H.H., Denis, M., Krimbou, L., Marcil, M., Genest, J., 2006. Cellular cholesterol homeostasis in vascular endothelial cells. Can. J. Cardiol., 22(Suppl. B):35B-40B.
[10]Javitt, N.B., 1994. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J., 8(15):1308-1311.
[11]Kennedy, M.A., Barrera, G.C., Nakamura, K., Baldan, A., Tarr, P., Fishbein, M.C., Frank, J., Francone, O.L., Edwards, P.A., 2005. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab., 1(2):121-131.
[12]Li, X., Pandak, W.M., Erickson, S.K., Ma, Y., Yin, L., Hylemon, P., Ren, S., 2007. Biosynthesis of the regulatory oxysterol, 5-cholesten-3beta, 25-diol 3-sulfate, in hepatocytes. J. Lipid Res., 48(12):2587-2596.
[13]Lin, Y.C., Lin, C.H., Kuo, C.Y., Yang, V.C., 2009. ABCA1 modulates the oligomerization and Golgi exit of caveolin-1 during HDL-mediated cholesterol efflux in aortic endothelial cells. Biochem. Biophys. Res. Commun., 382(1):189-195.
[14]Liu, L., Bortnick, A.E., Nickel, M., Dhanasekaran, P., Subbaiah, P.V., Lund-Katz, S., Rothblat, G.H., Phillips, M.C., 2003. Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol: formation of nascent high density lipoprotein particles. J. Biol. Chem., 278(44):42976-42984.
[15]Ma, Y., Ren, S., Pandak, W.M., Li, X., Ning, Y., Lu, C., Zhao, F., Yin, L., 2007. The effects of inflammatory cytokines on steroidogenic acute regulatory protein expression in macrophages. Inflamm. Res., 56(12):495-501.
[16]Ning, Y., Chen, S., Li, X., Ma, Y., Zhao, F., Yin, L., 2006. Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (bEnd.3). Biochem. Biophys. Res. Commun., 342(4):1249-1256.
[17]Ning, Y., Bai, Q., Lu, H., Li, X., Pandak, W.M., Zhao, F., Chen, S., Ren, S., Yin, L., 2009. Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis, 204(1):114-120.
[18]O'Connell, B.J., Denis, M., Genest, J., 2004. Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation, 110(18):2881-2888.
[19]Pandak, W.M., Ren, S., Marques, D., Hall, E., Redford, K., Mallonee, D., Bohdan, P., Heuman, D., Gil, G., Hylemon, P., 2002. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J. Biol. Chem., 277(50):48158-48164.
[20]Ren, S., Hylemon, P., Zhang, Z.P., Rodriguez-Agudo, D., Marques, D., Li, X., Zhou, H., Gil, G., Pandak, W.M., 2006. Identification of a novel sulfonated oxysterol, 5-cholesten-3beta,25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria. J. Lipid Res., 47(5):1081-1090.
[21]Ren, S., Li, X., Rodriguez-Agudo, D., Gil, G., Hylemon, P., Pandak, W.M., 2007. Sulfated oxysterol, 25HC3S, is a potent regulator of lipid metabolism in human hepatocytes. Biochem. Biophys. Res. Commun., 360(4):802-808.
[22]Repa, J.J., Mangelsdorf, D.J., 2002. The liver X receptor gene team: potential new players in atherosclerosis. Nat. Med., 8(11):1243-1248.
[23]Stocco, D.M., 2000. Intramitochondrial cholesterol transfer. Biochim. Biophys. Acta, 1486(1):184-197.
[24]Sugawara, T., Lin, D., Holt, J.A., Martin, K.O., Javitt, N.B., Miller, W.L., Strauss III, J.F., 1995. Structure of the human steroidogenic acute regulatory protein (StAR) gene: StAR stimulates mitochondrial cholesterol 27-hydroxylase activity. Biochemistry, 34(39):12506-12512.
[25]Vaughan, A.M., Oram, J.F., 2005. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J. Biol. Chem., 280(34):30150-30157.
[26]Venkateswaran, A., Laffitte, B.A., Joseph, S.B., Mak, P.A., Wilpitz, D.C., Edwards, P.A., Tontonoz, P., 2000. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl. Acad. Sci. USA, 97(22):12097-12102.
[27]Yue, F., Zhang, G., Jin, H., Shi, L., Yin, L., 2004. Cytological characteristics and gene micro-arry analysis of a mouse brain microvascular endothelial cell strain: bEnd.3. Chin. J. Pathophysiol., 20(8):1340-1344 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>