Full Text:   <1541>

CLC number: S3

On-line Access: 2011-07-04

Received: 2010-08-13

Revision Accepted: 2010-12-27

Crosschecked: 2011-05-31

Cited: 4

Clicked: 4305

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2011 Vol.12 No.7 P.518-526

http://doi.org/10.1631/jzus.B1000299


Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon


Author(s):  Jian-kun Xie, Xiang-li Kong, Jie Chen, Biao-lin Hu, Piao Wen, Jie-yun Zhuang, Jin-song Bao

Affiliation(s):  Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China, China National Rice Research Institute, Hangzhou 310006, China

Corresponding email(s):   jsbao@zju.edu.cn

Key Words:  Rice straw, Acid detergent fiber, Lignin, Quantitative trait loci


Jian-kun Xie, Xiang-li Kong, Jie Chen, Biao-lin Hu, Piao Wen, Jie-yun Zhuang, Jin-song Bao. Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon[J]. Journal of Zhejiang University Science B, 2011, 12(7): 518-526.

@article{title="Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon",
author="Jian-kun Xie, Xiang-li Kong, Jie Chen, Biao-lin Hu, Piao Wen, Jie-yun Zhuang, Jin-song Bao",
journal="Journal of Zhejiang University Science B",
volume="12",
number="7",
pages="518-526",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000299"
}

%0 Journal Article
%T Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon
%A Jian-kun Xie
%A Xiang-li Kong
%A Jie Chen
%A Biao-lin Hu
%A Piao Wen
%A Jie-yun Zhuang
%A Jin-song Bao
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 7
%P 518-526
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000299

TY - JOUR
T1 - Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon
A1 - Jian-kun Xie
A1 - Xiang-li Kong
A1 - Jie Chen
A1 - Biao-lin Hu
A1 - Piao Wen
A1 - Jie-yun Zhuang
A1 - Jin-song Bao
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 7
SP - 518
EP - 526
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000299


Abstract: 
rice straw is always regarded as a by-product of rice production, but it could be a significant energy source for ruminant animals. Knowledge of the genetic variation and genetic architecture of cell wall traits will facilitate rice breeders by improving relevant traits through selective breeding and genetic engineering. The common wild rice, Oryza rufipogon Griff., which is considered to be the progenitor of Oryza sativa, has been widely utilized for the identification of genes of agronomic importance for rice genetic improvement. In the present study, the mapping of quantitative trait loci (QTLs) for acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), and ADL/NDF ratio was carried out in two environments using a backcrossed inbred line (BIL) population derived from a cross between the recurrent parent Xieqingzao B (XB) and an accession of Dongxiang wild rice (DWR). The results indicated that all four traits tested were continuously distributed among the BILs, but many BILs showed transgressive segregation. A total of 16 QTLs were identified for the four traits, but no QTLs were in common in two environments, suggesting that environment has dramatic effects on fiber and lignin syntheses. Compared to the QTL positions for grain yield-related traits, there were no unfavorable correlations between grain yield components and cell wall traits in this population. The QTLs identified in this study are useful for the development of dual-purpose rice varieties that are high in grain yield and are also high in straw quality.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdel-Haleem, H., Bowman, J., Giroux, M., Kanazin, V., Talbert, H., Surber, L., Blake, T., 2010. Quantitative trait loci of acid detergent fiber and grain chemical composition in hulled×hull-less barley population. Euphytica, 172(3):405-418.

[2]Agbagla-Dohnani, A., Noziere, P., Clement, G., Doreau, M., 2001. In sacco degradability, chemical and morphological composition of 15 varieties of European rice straw. Anim. Feed Sci. Technol., 94(1-2):15-27.

[3]Bao, J.S., Jin, L., Shen, Y., Xie, J.K., 2007. Genetic mapping of quantitative trait loci associated with fiber and lignin content in rice. Cereal Res. Commun., 35(1):23-30.

[4]Barrière, Y., Thomas, J., Denoue, D., 2008. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838(F286. Plant Sci., 175(4):585-595.

[5]Barrière, Y., Méchin, V., Lafarguette, F., Manicacci, D., Guillon, F., Wang, H., Lauressergues, D., Pichon, M., Bosio, M., Tatout, C., 2009. Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production. Maydica, 54(2/3):161-198.

[6]Cardinal, A.J., Lee, M., Moore, K.J., 2003. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet., 106(5):866-874.

[7]Chen, H., Qian, N., Guo, W., Song, Q., Li, B., Deng, F., Dong, C., Zhang, T., 2009. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro. D8 in upland cotton. Theor. Appl. Genet., 119(4):605-612.

[8]Chen, J., Huang, D.R., Wang, L., Liu, G.J., Zhuang, J.Y., 2010. Identification of quantitative trait loci for resistance to whitebacked planthopper, Sogatella furcifera, from an interspecific cross Oryza sativa×O. rufipogon. Breed. Sci., 60(2):153-159.

[9]Cogan, N.O.I., Smith, K.F., Yamada, T., Francki, M.G., Vecchies, A.C., Jones, E.S., Spangenberg, G.C., Forster, J.W., 2005. QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet., 110(2):364-380.

[10]Dong, C.F., Cai, Q.S., Wang, C.L., Harada, J., Nemoto, K., Shen, Y.X., 2008. QTL analysis for traits associated with feeding value of straw in rice (Oryza sativa L.). Rice Sci., 15(3):195-200.

[11]González-Martínez, S.C., Wheeler, N.C., Ersoz, E., Nelson, C.D., Neale, D.B., 2007. Association genetics in Pinus taeda L. I. Wood property traits. Genetics, 175(1):399-409.

[12]Grando, S., Baum, M., Ceccarelli, S., Goodchild, A., El-Haramein, F.L., Jahoor, A., Backes, G., 2005. QTL for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare×H. spontaneum cross in a Mediterranean environment. Theor. Appl. Genet., 110(4):688-695.

[13]Huang, D.R., Chen, J., Hou, L.J., Fan, Y.Y., Zhuang, J.Y., 2008. Identification of QTLs for yield traits in the BC1F5 population of Xieqingzao B//Xieqingzao B/Dongxiang wild rice. J. Agric. Biotech., 16:977-982.

[14]Kong, X.L., Xie, J.K., Wu, X.L., Huang, Y.J., Bao, J.S., 2005. Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. J. Agric. Food Chem., 53(8):2843-2848.

[15]Krakowsky, M.D., Lee, M., Coors, J.G., 2005. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.). I: stalk tissue. Theor. Appl. Genet., 111(2):337-346.

[16]Krakowsky, M.D., Lee, M., Coors, J.G., 2006. Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.). II: leaf sheath tissue. Theor. Appl. Genet., 112(4):717-726.

[17]Li, X., Weng, J.K., Chapple, C., 2008. Improvement of biomass through lignin modification. Plant J., 54(4):569-581.

[18]Lorenz, A.J., Coors, J.G., Hansey, C.N., Kaeppler, S.M., de Leon, N., 2010. Genetic analysis of cell wall traits relevant to cellulosic ethanol production in maize (Zea mays L.). Crop Sci., 50(3):842-852.

[19]McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., Blinstrub, M., 1997. Report on QTL nomenclature. Rice Genet. Newslett., 14:11-13.

[20]Méchin, V., Argillier, O., Hebert, Y., Guingo, E., Moreau, L., Charcosset, A., Barriere, Y., 2001. Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci., 41(3):690-697.

[21]Putun, A.E., Apaydin, E., Putun, E., 2004. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy, 29(12-15):2171-2180.

[22]Tian, F., Li, D.J., Fu, Q., Zhu, Z.F., Fu, Y.C., Wang, X.K., Sun, C.Q., 2006. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor. Appl. Genet., 112(3):570-580.

[23]Truntzler, M., Barrière, Y., Sawkins, M.C., Lespinasse, D., Betran, J., Charcosset, A., Moreau, L., 2010. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor. Appl. Genet., 121(8):1465-1482.

[24]van Soest, P.J., 1994. Nutritional Ecology of the Ruminant, 2nd Ed. Cornell University Press, Ithaca, NY, p.108-121.

[25]Wang, S., Basten, C.J., Zeng, Z.B., 2005. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm [Accessed on June 30, 2009].

[26]Wu, J., Gutierrez, O.A., Jenkins, J.N., McCarty, J.C., Zhu, J., 2009. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica, 165(2):231-245.

[27]Xie, J.K., Wu, X.L., Jin, L., Wan, Y., Huang, Y.J., Bao, J.S., 2006. Identification of simple sequence repeat (SSR) markers for acid detergent fiber in rice straw by bulked segregant analysis. J. Agric. Food Chem., 54(20):7616-7620.

[28]Xie, J., Agrama, H.A., Kong, D., Zhuang, J., Hu, B., Wan, Y., Yan, W., 2010. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon). Genet. Resour. Crop Evol., 57(4):597-609.

[29]Xiong, Y., Fei, S.Z., Brummer, E.C., Moore, K.J., Barker, R.E., Jung, G., Curley, J., Warnke, S.E., 2006. QTL analyses of fiber components and crude protein in an annual×perennial ryegrass interspecific hybrid population. Mol. Breed., 18(4):327-340.

[30]Zhang, X., Zhou, S.X., Fu, Y.C., Su, Z., Wang, X.K., Sun, C.Q., 2006. Identification of a drought tolerant introgression line derived from dongxiang common wild rice (O. rufipogon Griff.). Plant Mol. Biol., 62(1-2):247-259.

[31]Zhou, S.X., Tian, F., Zhou, Z.F., Fu, Y.C., Wang, X.K., Sun, C.Q., 2006. Identification of quantitative trait loci controlling drought tolerance at seedling stage in Chinese Dongxiang common wild rice (Oryza rufipogon Griff.). Acta Genet. Sin., 33(6):551-558.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE