Full Text:   <3247>

CLC number: Q945.78

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2012-10-31

Cited: 2

Clicked: 6282

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.12 P.1006-1014

http://doi.org/10.1631/jzus.B1200089


An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission


Author(s):  Ya-wei Li, Ze-hua Gong, Yao Mu, Yi-xian Zhang, Zeng-jie Qiao, Li-ping Zhang, Zhu-ping Jin, Hua Li, Yan-xi Pei

Affiliation(s):  School of Life Science, Shanxi University, Taiyuan 030006, China; more

Corresponding email(s):   peiyanxi@sxu.edu.cn

Key Words:  AtCSR, H2S gas-transmitter, Glutathione, Cadmium stress sensitivity


Ya-wei Li, Ze-hua Gong, Yao Mu, Yi-xian Zhang, Zeng-jie Qiao, Li-ping Zhang, Zhu-ping Jin, Hua Li, Yan-xi Pei. An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission[J]. Journal of Zhejiang University Science B, 2012, 13(12): 1006-1014.

@article{title="An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission",
author="Ya-wei Li, Ze-hua Gong, Yao Mu, Yi-xian Zhang, Zeng-jie Qiao, Li-ping Zhang, Zhu-ping Jin, Hua Li, Yan-xi Pei",
journal="Journal of Zhejiang University Science B",
volume="13",
number="12",
pages="1006-1014",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200089"
}

%0 Journal Article
%T An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission
%A Ya-wei Li
%A Ze-hua Gong
%A Yao Mu
%A Yi-xian Zhang
%A Zeng-jie Qiao
%A Li-ping Zhang
%A Zhu-ping Jin
%A Hua Li
%A Yan-xi Pei
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 12
%P 1006-1014
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200089

TY - JOUR
T1 - An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission
A1 - Ya-wei Li
A1 - Ze-hua Gong
A1 - Yao Mu
A1 - Yi-xian Zhang
A1 - Zeng-jie Qiao
A1 - Li-ping Zhang
A1 - Zhu-ping Jin
A1 - Hua Li
A1 - Yan-xi Pei
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 12
SP - 1006
EP - 1014
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200089


Abstract: 
The gene AtCSR encodes peptidyl-prolyl cis/trans isomerases (PPIases) that accelerate energetically unfavorable cis/trans isomerization of the peptide bond preceding proline production. In our studies, we found that AtCSR was associated with cadmium (Cd)-sensitive response in Arabidopsis. Our results show that AtCSR expression was triggered by Cd-stress in wild type Arabidopsis. The expression of some genes responsible for Cd2+ transportation into vacuoles was induced, and the expression of the iron-regulated transporter 1 (IRT1) related to Cd2+ absorption from the environment was not induced in wild type with Cd2+ treatment. The expression of Cd-transportation related genes was not in response to Cd-stress, whereas IRT expression increased dramatically in atcsr-2 with Cd2+ treatment. The expression of glutathione 1 (GSH1) was consistent with GSH being much lower in atcsr-2 in comparison with the wild type with Cd2+ treatment. Additionally, malondialdehyde (MDA), hydrogen peroxide, and Cd2+ contents, and activities of some antioxidative enzymes, differed between the wild type and atcsr-2. Hydrogen sulfide (H2S) has been confirmed as the third gas-transmitter over recent years. The findings revealed that the expression pattern of H2S-releasing related genes and that of Cd-induced chelation and transportation genes matched well in the wild type and atcsr-2, and H2S could regulate the expression of the Cd-induced genes and alleviate Cd-triggered toxicity. Finally, one possible suggestion was given: down-regulation of atcsr-2, depending on h2S gas-transmitter not only weakened Cd2+ chelation, but also reduced Cd2+ transportation into vacuoles, as well as enhancing the Cd2+ assimilation, thus rendering atcsr-2 mutant sensitive to Cd-stress.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Besson-Bard, A., Gravot, A., Richaud, P., Auroy, P., Duc, C., Gaymard, F., Taconnat, L., Renou, J.P., Pugin, A., Wendehenne, D., 2009. NO contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol., 149(3):1302-1315.

[2]Bloem, E., Riemenschneider, A., Volker, J., Papenbrock, J., Schmidt, A., Salac, I., Haneklaus, S., Schnug, E., 2004. Sulphur supply and infection with Pyrenopeziza brassicae influence l-cysteine desulphydrase activity in Brassica napus L. J. Exp. Bot., 55(406):2305-2312.

[3]Bovet, L., Eggmann, T., Meylan-Bettex, M., Polier, J., Kammer, P., Marin, E., Feller, U., Martinoia, E., 2003. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ., 26(3):371-381.

[4]Byczkowski, J.Z., Sorenson, J.R., 1984. Effects of metal compounds on mitochondrial function: a review. Sci. Total Environ., 37(2-3):133-162.

[5]Chance, B., Maehly, A.C., 1955. Assay of catalase and peroxidases. Methods Enzymol., 1(2):764-775.

[6]Cherkasov, A.A., Overton, R.A.Jr., Sokolov, E.P., Sokolova, I.M., 2007. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation. J. Exp. Biol., 210(1):46-55.

[7]Cho, U., Seo, N., 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 168(1):113-120.

[8]Clemens, S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4):475-486.

[9]Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 123(3):825-832.

[10]Connolly, E.L., Fett, J.P., Guerinot, M.L., 2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14(6):1347-1357.

[11]Dorta, D.J., Leite, S., Demarco, K.C., Prado, I.M., Rodrigues, T., Mingatto, F.E., Uyemura, S.A., Santos, A.C., Curti, C., 2003. A proposed sequence of events for cadmium-induced mitochondrial impairment. J. Inorg. Biochem., 97(3):251-257.

[12]Gonçalves, J.F., Tabaldi, L.A., Cargnelutti, D., Pereira, L.B., Maldaner, J., Becker, A.G., Rossato, L.V., Rauber, R., Bagatini, M.D., Bisognin, D.A., et al., 2009. Cadmium-induced oxidative stress in two potato cultivars. Biometals, 22(5):779-792.

[13]Guo, J.B., Dai, X., Xu, W.Z., Ma, M., 2008. Over-expressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72(7):1020-1026.

[14]Gupta, A.S., Webb, R.P., Holaday, A.S., Allen, R.D., 1993. Over-expression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-over-expressing plants). Plant Physiol., 103(4):1067-1073.

[15]Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125(1):189-198.

[16]Hunter, T., 1998. Prolyl isomerases and nuclear function. Cell, 92(2):141-143.

[17]Jimenez, A., Hernandez, J.A., Del Rio, L.A., Sevilla, F., 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol., 114(1):275-284.

[18]Jin, Z., Shen, J., Qiao, Z., Yang, G., Wang, R., Pei, Y., 2011. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 414(3):481-486.

[19]Kiefhaber, T., Quaas, R., Hahn, U., Schmid, F.X., 1990. Folding of ribonuclease T1.2. Kinetic models for the folding and unfolding reactions. Biochemistry, 29(12):3061-3070.

[20]Koren′kov, V., Park, S., Cheng, N.H., Sreevidya, C., Lachmansingh, J., Morris, J., Hirschi, K., Wagner, G.J., 2007. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta, 225(2):403-411.

[21]Li, Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J., Rea, P.A., 1997. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. PNAS, 94(1):42-47.

[22]Lu, K.P., Finn, G., Lee, T.H., Nicholson, L.K., 2007. Prolyl cis-trans isomerization as a molecular timer. Nat. Chem. Biol., 3(10):619-629.

[23]Marie, V., Gonzalez, P., Baudrimont, M., Boutet, I., Moraga, D., Bourdineaud, J.P., Boudou, A., 2006. Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc. Environ. Toxicol. Chem., 25(2):412-418.

[24]Rea, P.A., Vatamaniuk, O.K., Rigden, D.J., 2004. Weeds, worms, and more: papain’s long-lost cousin, phytochelatin synthase. Plant Physiol., 136(1):2463-2474.

[25]Riemenschneider, A., Wegele, R., Schmidt, A., Papenbrock, J., 2005. Isolation and characterization of a d-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J., 272(5):1291-1304.

[26]Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gómez, M., del Río, L.A., Sandalio, L.M., 2004. Cadmium-induced subcellular accumulation of O2–. and H2O2 in pea leaves. Plant Cell Environ., 27(9):1122-1134.

[27]Ruegsegger, A., Schmutz, D., Brunold, C., 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol., 93(4):1579-1584.

[28]Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I., 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109(4):1427-1433.

[29]Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., del Río, L.A., 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot., 52(364):2115-2126.

[30]Sanità di Toppi, L., Gabbrielli, R., 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41(2):105-130.

[31]Sanni, B., Williams, K., Sokolov, E.P., Sokolova, I.M., 2008. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 147(1):101-112.

[32]Sokolova, I.M., 2004. Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae). J. Exp. Biol., 207(15):2639-2648.

[33]Steffens, J.C., 1990. The heavy-metal binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41(1):553-575.

[34]Thangavel, P., Long, S., Minocha, R., 2007. Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss. Org. Cult., 88(2):201-216.

[35]Thordal-Christensen, H., Zhang, Z., Wei, Y., Collinge, D.B., 1997. Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J., 11(6):1187-1194.

[36]Valko, M., Morris, H., Cronin, M.T.D., 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem., 12(10):1161-1208.

[37]Wang, Y., Qian, Y., Hu, H., Xu, Y., Zhang, H., 2011. Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiol. Plant, 33(2):349-357.

[38]Yadav, S.K., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot., 76(2):167-179.

[39]Zientara, K., Wawrzyńska, A., Lukomska, J., López-Moya, J.R., Liszewska, F., Assunção, A.G., Aarts, M.G., Sirko, A., 2009. Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J. Biotechnol., 139(3):258-263.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE